Microprocessor
A microprocessor is a computer processor for which the data processing logic and control is included on a single integrated circuit, or a small number of ICs. The microprocessor contains the arithmetic, logic, and control circuitry required to perform the functions of a computer's central processing unit. The IC is capable of interpreting and executing program instructions and performing arithmetic operations. The microprocessor is a multipurpose, clock-driven, register-based, digital integrated circuit that accepts binary data as input, processes it according to instructions stored in its memory, and provides results as output. Microprocessors contain both combinational logic and sequential digital logic, and operate on numbers and symbols represented in the binary number system.
The integration of a whole CPU onto a single or a few integrated circuits using very-large-scale integration greatly reduced the cost of processing power. Integrated circuit processors are produced in large numbers by highly automated metal–oxide–semiconductor fabrication processes, resulting in a relatively low unit price. Single-chip processors increase reliability because there are fewer electrical connections that can fail. As microprocessor designs improve, the cost of manufacturing a chip generally stays the same, according to Rock's law.
Before microprocessors, small computers had been built using racks of circuit boards with many medium- and small-scale integrated circuits. These were typically of the TTL type. Microprocessors combined this into one or a few large-scale ICs. While there is disagreement over who deserves credit for the invention of the microprocessor, the first commercially available microprocessor was the Intel 4004, designed by Federico Faggin and introduced in 1971.
Continued increases in microprocessor capacity have since rendered other forms of computers almost completely obsolete, with one or more microprocessors used in everything from the smallest embedded systems and handheld devices to the largest mainframes and supercomputers.
A microprocessor is distinct from a microcontroller including a system on a chip. A microprocessor is related but distinct from a digital signal processor, a specialized microprocessor chip, with its architecture optimized for the operational needs of digital signal processing.
Structure
The complexity of an integrated circuit is bounded by physical limitations on the number of transistors that can be put onto one chip, the number of package terminations that can connect the processor to other parts of the system, the number of interconnections it is possible to make on the chip, and the heat that the chip can dissipate. Advancing technology makes more complex and powerful chips feasible to manufacture.A minimal hypothetical microprocessor might include only an arithmetic logic unit, and a control logic section. The ALU performs addition, subtraction, and operations such as AND or OR. Each operation of the ALU sets one or more flags in a status register, which indicate the results of the last operation. The control logic retrieves instruction codes from memory and initiates the sequence of operations required for the ALU to carry out the instruction. A single operation code might affect many individual data paths, registers, and other elements of the processor.
As integrated circuit technology advanced, it was feasible to manufacture more and more complex processors on a single chip. The size of data objects became larger; allowing more transistors on a chip allowed word sizes to increase from 4- and 8-bit words up to today's 64-bit words. Additional features were added to the processor architecture; more on-chip registers sped up programs, and complex instructions could be used to make more compact programs. Floating-point arithmetic, for example, was often not available on 8-bit microprocessors, but had to be carried out in software. Integration of the floating-point unit, first as a separate integrated circuit and then as part of the same microprocessor chip, sped up floating-point calculations.
Occasionally, physical limitations of integrated circuits made such practices as a bit-slice approach necessary. Instead of processing all of a long word on one integrated circuit, multiple circuits in parallel processed subsets of each word. While this required extra logic to handle, for example, carry and overflow within each slice, the result was a system that could handle, for example, 32-bit words using integrated circuits with a capacity for only four bits each.
The ability to put large numbers of transistors on one chip makes it feasible to integrate memory on the same die as the processor. This CPU cache has the advantage of faster access than off-chip memory and increases the processing speed of the system for many applications. Processor clock frequency has increased more rapidly than external memory speed, so cache memory is necessary if the processor is not to be delayed by slower external memory.
The design of some processors has become complicated enough to be difficult to fully test, and this has caused problems at large cloud providers.
Special-purpose designs
A microprocessor is a general-purpose processing entity. Several specialized processing devices have followed:- A digital signal processor is specialized for signal processing.
- Graphics processing units are processors designed primarily for real-time rendering of images.
- Other specialized units exist for video processing and machine vision.
- Microcontrollers in embedded systems and peripheral devices.
- Systems on chip often integrate one or more microprocessor and microcontroller cores with other components such as radio modems, and are used in smartphones and tablet computers.
Speed and power considerations
Some people say that running 32-bit arithmetic on an 8-bit chip could end up using more power, as the chip must execute software with multiple instructions.
However, others say that modern 8-bit chips are always more power-efficient than 32-bit chips when running equivalent software routines.
Embedded applications
Thousands of items that were traditionally not computer-related include microprocessors. These include household appliances, vehicles, tools and test instruments, toys, light switches/dimmers and electrical circuit breakers, smoke alarms, battery packs, and hi-fi audio/visual components. Such products as cellular telephones, DVD video system and HDTV broadcast systems fundamentally require consumer devices with powerful, low-cost, microprocessors. Increasingly stringent pollution control standards effectively require automobile manufacturers to use microprocessor engine management systems to allow optimal control of emissions over the widely varying operating conditions of an automobile. Non-programmable controls would require bulky, or costly implementation to achieve the results possible with a microprocessor.A microprocessor control program can be tailored to fit the needs of a product line, allowing upgrades in performance with minimal redesign of the product. Unique features can be implemented in product line's various models at negligible production cost.
Microprocessor control of a system can provide control strategies that would be impractical to implement using electromechanical controls or purpose-built electronic controls. For example, an internal combustion engine's control system can adjust ignition timing based on engine speed, load, temperature, and any observed tendency for knocking—allowing the engine to operate on a range of fuel grades.
History
The advent of low-cost computers on integrated circuits has transformed modern society. General-purpose microprocessors in personal computers are used for computation, text editing, multimedia display, and communication over the Internet. Many more microprocessors are part of embedded systems, providing digital control over myriad objects from appliances to automobiles to cellular phones and industrial process control. Microprocessors perform binary operations based on Boolean logic, named after George Boole. The ability to operate computer systems using Boolean logic was first proven in a 1938 thesis by master's student Claude Shannon, who later went on to become a professor. Shannon is considered "The Father of Information Theory". In 1951, microprogramming was invented by Maurice Wilkes at the University of Cambridge from the realization that the central processor could be controlled by a specialised program in a dedicated ROM. Wilkes is also credited with the idea of symbolic labels, macros and subroutine libraries.Following the development of MOS integrated circuit chips in the early 1960s, MOS chips reached higher transistor density and lower manufacturing costs than bipolar integrated circuits by 1964. MOS chips further increased in complexity at a rate predicted by Moore's law, leading to large-scale integration with hundreds of transistors on a single MOS chip by the late 1960s. The application of MOS LSI chips to computing was the basis for the first microprocessors, as engineers began recognizing that a complete computer processor could be contained on several MOS LSI chips. Designers in the late 1960s were striving to integrate the central processing unit functions of a computer onto a handful of MOS LSI chips, called microprocessor unit chipsets.
While there is disagreement over who invented the microprocessor, the first commercially available microprocessor was the Intel 4004, released as a single MOS LSI chip in 1971. The single-chip microprocessor was made possible with the development of MOS silicon-gate technology. The earliest MOS transistors had aluminium metal gates, which Italian physicist Federico Faggin replaced with silicon self-aligned gates to develop the first silicon-gate MOS chip at Fairchild Semiconductor in 1968. Faggin later joined Intel and used his silicon-gate MOS technology to develop the 4004, along with Marcian Hoff, Stanley Mazor and Masatoshi Shima in 1971. The 4004 was designed for Busicom, which had earlier proposed a multi-chip design in 1969, before Faggin's team at Intel changed it into a new single-chip design. The 4-bit Intel 4004 was soon followed by the 8-bit Intel 8008 in 1972. The MP944 chipset used in the F-14 Central Air Data Computer in 1970 has also been cited as an early microprocessor, but was not known to the public until declassified in 1998.
Other embedded uses of 4-bit and 8-bit microprocessors, such as terminals, printers, various kinds of automation etc., followed soon after. Affordable 8-bit microprocessors with 16-bit addressing also led to the first general-purpose microcomputers from the mid-1970s on.
The first use of the term "microprocessor" is attributed to Viatron Computer Systems describing the custom integrated circuit used in their System 21 small computer system announced in 1968.
Since the early 1970s, the increase in capacity of microprocessors has followed Moore's law; this originally suggested that the number of components that can be fitted onto a chip doubles every year. With present technology, it is actually every two years, and as a result Moore later changed the period to two years.