Electrical wiring
Electrical wiring is an electrical installation of cabling and associated devices such as switches, distribution boards, sockets, and light fittings in a structure.
Wiring is subject to safety standards for design and installation. Allowable wire and cable types and sizes are specified according to the circuit operating voltage and electric current capability, with further restrictions on the environmental conditions, such as ambient temperature range, moisture levels, and exposure to sunlight and chemicals.
Associated circuit protection, control, and distribution devices within a building's wiring system are subject to voltage, current, and functional specifications. Wiring safety codes vary by locality, country, or region. The International Electrotechnical Commission is attempting to harmonise wiring standards among member countries, but significant variations in design and installation requirements still exist.
Wiring methods
Materials for wiring interior electrical systems in buildings vary depending on:- Intended use and amount of power demand on the circuit
- Type of occupancy and size of the building
- National and local regulations
- Environment in which the wiring must operate.
Wires and cables are rated by the circuit voltage, temperature rating and environmental conditions in which they can be used. A wire or cable has a voltage rating and a maximum conductor surface temperature rating. The amount of current a cable or wire can safely carry depends on the installation conditions.
The international standard wire sizes are given in the IEC 60228 standard of the International Electrotechnical Commission. In North America, the American Wire Gauge standard for wire sizes is used.
Cables
Modern wiring materials
Modern non-metallic sheathed cables, such as Types NMB and NMC, consist of two to four wires covered with thermoplastic insulation, plus a wire for Protective Earthing/Grounding, surrounded by a flexible plastic jacket. In North America and the UK this conductor is usually bare wire but in the UK it is required that this bare Protective Earth conductor be sheathed in Green/Yellow insulating tubing where the Cable Sheathing has been removed. Most other jurisdictions now require the Protective Earth conductor to be insulated to the same standard as the current carrying conductors with Green/Yellow insulation.With some cables the individual conductors are wrapped in paper before the plastic jacket is applied.
Special versions of non-metallic sheathed cables, such as US Type UF, are designed for direct underground burial or exterior use where exposure to ultraviolet radiation is a possibility. These cables differ in having a moisture-resistant construction, lacking paper or other absorbent fillers, and being formulated for UV resistance.
Rubber-like synthetic polymer insulation is used in industrial cables and power cables installed underground because of its superior moisture resistance.
Insulated cables are rated by their allowable operating voltage and their maximum operating temperature at the conductor surface. A cable may carry multiple usage ratings for applications, for example, one rating for dry installations and another when exposed to moisture or oil.
Generally, single conductor building wire in small sizes is solid wire, since the wiring is not required to be very flexible. Building wire conductors larger than 10 AWG are stranded for flexibility during installation, but are not sufficiently pliable to use as appliance cord.
Cables for industrial, commercial and apartment buildings may contain many insulated conductors in an overall jacket, with helical tape steel or aluminium armour, or steel wire armour, and perhaps as well an overall PVC or lead jacket for protection from moisture and physical damage. Cables intended for very flexible service or in marine applications may be protected by woven bronze wires. Power or communications cables that are routed in or through air-handling spaces of office buildings are required under the model building code to be either encased in metal conduit, or rated for low flame and smoke production.
For some industrial uses in steel mills and similar hot environments, no organic material gives satisfactory service. Cables insulated with compressed mica flakes are sometimes used. Another form of high-temperature cable is mineral-insulated cable, with individual conductors placed within a copper tube and the space filled with magnesium oxide powder. The whole assembly is drawn down to smaller sizes, thereby compressing the powder. Such cables have a certified fire resistance rating and are more costly than non–fire-rated cable. They have little flexibility and behave more like rigid conduit rather than flexible cables.
The environment of the installed wires determine how much current a cable is permitted to carry. Because multiple conductors bundled in a cable cannot dissipate heat as easily as single insulated conductors, those circuits are always rated at a lower ampacity. Tables in electrical safety codes give the maximum allowable current based on size of conductor, voltage potential, insulation type and thickness, and the temperature rating of the cable itself. The allowable current will also be different for wet or dry locations, for hot or cool locations. In a run of cable through several areas, the part with the lowest rating becomes the rating of the overall run.
Cables usually are secured with special fittings where they enter electrical apparatus; this may be a simple screw clamp for jacketed cables in a dry location, or a polymer-gasketed cable connector that mechanically engages the armour of an armoured cable and provides a water-resistant connection. Special cable fittings may be applied to prevent explosive gases from flowing in the interior of jacketed cables, where the cable passes through areas where flammable gases are present. To prevent loosening of the connections of individual conductors of a cable, cables must be supported near their entrance to devices and at regular intervals along their runs. In tall buildings, special designs are required to support the conductors of vertical runs of cable. Generally, only one cable per fitting is permitted, unless the fitting is rated or listed for multiple cables.
Special cable constructions and termination techniques are required for cables installed in ships. Such assemblies are subjected to environmental and mechanical extremes. Therefore, in addition to electrical and fire safety concerns, such cables may also be required to be pressure-resistant where they penetrate a vessel's bulkheads. They must also resist corrosion caused by salt water or salt spray, which is accomplished through the use of thicker, specially constructed jackets, and by tinning the individual wire stands.
In North American practice, for residential and light commercial buildings fed with a single-phase split 120/240 service, an overhead cable from a transformer on a power pole is run to the service entrance point. The cable is a three conductor twisted "triplex" cable with a bare neutral and two insulated conductors, with no overall cable jacket. The neutral conductor is often a supporting "messenger" steel wire, which is used to support the insulated line conductors.
Copper conductors
Electrical devices often use copper conductors because of their properties, including their high electrical conductivity, tensile strength, ductility, creep resistance, corrosion resistance, thermal conductivity, coefficient of thermal expansion, solderability, resistance to electrical overloads, compatibility with electrical insulators, and ease of installation. Copper is used in many types of electrical wiring.Aluminium conductors
was common in North American residential wiring from the late 1960s to mid-1970s due to the rising cost of copper. Because of its greater resistivity, aluminium wiring requires larger conductors than copper. For instance, instead of 14 AWG copper wire, aluminium wiring would need to be 12 AWG on a typical 15 ampere lighting circuit, though local building codes vary.Solid aluminium conductors were originally made in the 1960s from a utility-grade aluminium alloy that had undesirable properties for a building wire, and were used with wiring devices intended for copper conductors. These practices were found to cause defective connections and fire hazards. In the early 1970s new aluminium wire made from one of several special alloys was introduced, and all devices – breakers, switches, receptacles, splice connectors, wire nuts, etc. — were specially designed for the purpose. These newer aluminium wires and special designs address problems with junctions between dissimilar metals, oxidation on metal surfaces, and mechanical effects that occur as different metals expand at different rates with increases in temperature.
Unlike copper, aluminium has a tendency to creep or cold-flow under pressure, so older plain steel screw clamped connections could become loose over time. Newer electrical devices designed for aluminium conductors have features intended to compensate for this effect. Unlike copper, aluminium forms an insulating oxide layer on the surface. This is sometimes addressed by coating aluminium conductors with an antioxidant paste at joints, or by applying a mechanical termination designed to break through the oxide layer during installation.
Some terminations on wiring devices designed only for copper wire would overheat under heavy current load and cause fires when used with aluminium conductors. Revised standards for wire materials and wiring devices were developed to reduce these problems. While larger sizes are still used to feed power to electrical panels and large devices, aluminium wiring for residential use has acquired a poor reputation and has fallen out of favour.
Aluminium conductors are still heavily used for bulk power transmission, electric power distribution, and large feeder circuits with heavy current loads, due to the various advantages they offer over copper wiring. Aluminium conductors both cost and weigh less than copper conductors, so a much larger cross sectional area can be used for the same weight and price. This can compensate for the higher resistance and lower mechanical strength of aluminium, meaning the larger cross sectional area is needed to achieve comparable current capacity and other features. Aluminium conductors must be installed with compatible connectors and special care must be taken to ensure the contact surface does not oxidise.