Computer graphics


Computer graphics deals with generating images and art with the aid of computers. Computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing. It is often abbreviated as CG, or typically in the context of film as computer generated imagery. The non-artistic aspects of computer graphics are the subject of computer science research.
File:Geabios alps.gif|thumb|Simulated flight over Trenta valley in the Julian Alps
Computer graphics is responsible for displaying art and image data effectively and meaningfully to the consumer. It is also used for processing image data received from the physical world, such as photo and video content. Computer graphics development has had a significant impact on many types of media and has revolutionized animation, movies, advertising, and video games in general.

Overview

The term computer graphics has been used in a broad sense to describe "almost everything on computers that is not text or sound". Typically, the term computer graphics refers to several different things:
  • the representation and manipulation of image data by a computer
  • the various technologies used to create and manipulate images
  • methods for digitally synthesizing and manipulating visual content, see study of computer graphics
Today, computer graphics is widespread. Such imagery is found in and on television, newspapers, weather reports, and in a variety of medical investigations and surgical procedures. A well-constructed graph can present complex statistics in a form that is easier to understand and interpret. In the media "such graphs are used to illustrate papers, reports, theses", and other presentation material.
Many tools have been developed to visualize data. Computer-generated imagery can be categorized into several different types: two dimensional, three dimensional, and animated graphics. As technology has improved, 3D computer graphics have become more common, but 2D computer graphics are still widely used. Computer graphics has emerged as a sub-field of computer science which studies methods for digitally synthesizing and manipulating visual content. Over the past decade, other specialized fields have been developed like information visualization, and scientific visualization more concerned with "the visualization of three dimensional phenomena, where the emphasis is on realistic renderings of volumes, surfaces, illumination sources, and so forth, perhaps with a dynamic component".

History

The precursor sciences to the development of modern computer graphics were the advances in electrical engineering, electronics, and television that took place during the first half of the twentieth century. Screens could display art since the Lumiere brothers' use of mattes to create special effects for the earliest films dating from 1895, but such displays were limited and not interactive. The first cathode ray tube, the Braun tube, was invented in 1897 – it in turn would permit the oscilloscope and the military control panel – the more direct precursors of the field, as they provided the first two-dimensional electronic displays that responded to programmatic or user input. Nevertheless, computer graphics remained relatively unknown as a discipline until the 1950s and the post-World War II period – during which time the discipline emerged from a combination of both pure university and laboratory academic research into more advanced computers and the United States military's further development of technologies like radar, aviation, and rocketry developed during the war. New kinds of displays were needed to process the wealth of information resulting from such projects, leading to the development of computer graphics as a discipline.

1950s

Early projects like the Whirlwind and SAGE Projects introduced the CRT as a viable display and interaction interface and introduced the light pen as an input device. Douglas T. Ross of the Whirlwind SAGE system performed a personal experiment in which he wrote a small program that captured the movement of his finger and displayed its vector on a display scope. One of the first interactive video games to feature recognizable, interactive graphics – Tennis for Two – was created for an oscilloscope by William Higinbotham to entertain visitors in 1958 at Brookhaven National Laboratory and simulated a tennis match. In 1959, Douglas T. Ross, while working at MIT on transforming mathematic statements into computer generated 3D machine tool vectors, created a display scope image of a Disney cartoon character.
Electronics pioneer Hewlett-Packard went public in 1957 after incorporating the decade prior, and established strong ties with Stanford University through its founders, who were alumni. This began the decades-long transformation of the southern San Francisco Bay Area into the world's leading computer technology hub – now known as Silicon Valley. The field of computer graphics developed with the emergence of computer graphics hardware.
Further advances in computing led to greater advancements in interactive computer graphics. In 1959, the TX-2 computer was developed at MIT's Lincoln Laboratory. The TX-2 integrated a number of new man-machine interfaces. A light pen could be used to draw sketches on the computer using Ivan Sutherland's revolutionary Sketchpad software. Using a light pen, Sketchpad allowed one to draw simple shapes on the computer screen, save them and even recall them later. The light pen itself had a small photoelectric cell in its tip. This cell emitted an electronic pulse whenever it was placed in front of a computer screen and the screen's electron gun fired directly at it. By simply timing the electronic pulse with the current location of the electron gun, it was easy to pinpoint exactly where the pen was on the screen at any given moment. Once that was determined, the computer could then draw a cursor at that location. Sutherland seemed to find the perfect solution for many of the graphics problems he faced. Even today, many standards of computer graphics interfaces got their start with this early Sketchpad program. One example of this is in drawing constraints. If one wants to draw a square for example, they do not have to worry about drawing four lines perfectly to form the edges of the box. One can simply specify that they want to draw a box, and then specify the location and size of the box. The software will then construct a perfect box, with the right dimensions and at the right location. Another example is that Sutherland's software modeled objects – not just a picture of objects. In other words, with a model of a car, one could change the size of the tires without affecting the rest of the car. It could stretch the body of car without deforming the tires.

1960s

The phrase "computer graphics" has been credited to William Fetter, a graphic designer for Boeing in 1960. Fetter in turn attributed it to Verne Hudson, also at Boeing.
In 1961 another student at MIT, Steve Russell, created another important title in the history of video games, Spacewar! Written for the DEC PDP-1, Spacewar was an instant success and copies started flowing to other PDP-1 owners and eventually DEC got a copy. The engineers at DEC used it as a diagnostic program on every new PDP-1 before shipping it. The sales force picked up on this quickly enough and when installing new units, would run the "world's first video game" for their new customers.
At around the same time in the University of Cambridge, Elizabeth Waldram wrote code to display radio-astronomy maps on a cathode ray tube.
E. E. Zajac, a scientist at Bell Telephone Laboratory, created a film called "Simulation of a two-giro gravity attitude control system" in 1963. In this computer-generated film, Zajac showed how the attitude of a satellite could be altered as it orbits the Earth. He created the animation on an IBM 7090 mainframe computer. Also at BTL, Ken Knowlton, Frank Sinden, Ruth A. Weiss and Michael Noll started working in the computer graphics field. Sinden created a film called illustrating Newton's laws of motion in operation. Around the same time, other scientists were creating computer graphics to illustrate their research. At Lawrence Radiation Laboratory, Nelson Max created the films Flow of a Viscous Fluid and Propagation of Shock Waves in a Solid Form. Boeing Aircraft created a film called Vibration of an Aircraft.
Also sometime in the early 1960s, automobiles would also provide a boost through the early work of Pierre Bézier at Renault, who used Paul de Casteljau's curves – now called Bézier curves after Bézier's work in the field – to develop 3d modeling techniques for Renault car bodies. These curves would form the foundation for much curve-modeling work in the field, as curves – unlike polygons – are mathematically complex entities to draw and model well.
It was not long before major corporations started taking an interest in computer graphics. TRW, Lockheed-Georgia, General Electric and Sperry Rand are among the many companies that were getting started in computer graphics by the mid-1960s. IBM was quick to respond to this interest by releasing the IBM 2250 graphics terminal, the first commercially available graphics computer. Ralph Baer, a supervising engineer at Sanders Associates, came up with a home video game in 1966 that was later licensed to Magnavox and called the Odyssey. While very simplistic, and requiring fairly inexpensive electronic parts, it allowed the player to move points of light around on a screen. It was the first consumer computer graphics product. David C. Evans was director of engineering at Bendix Corporation's computer division from 1953 to 1962, after which he worked for the next five years as a visiting professor at Berkeley. There he continued his interest in computers and how they interfaced with people. In 1966, the University of Utah recruited Evans to form a computer science program, and computer graphics quickly became his primary interest. This new department would become the world's primary research center for computer graphics through the 1970s.
Also, in 1966, Ivan Sutherland continued to innovate at MIT when he invented the first computer-controlled head-mounted display. It displayed two separate wireframe images, one for each eye. This allowed the viewer to see the computer scene in stereoscopic 3D. The heavy hardware required for supporting the display and tracker was called the Sword of Damocles because of the potential danger if it were to fall upon the wearer. After receiving his Ph.D. from MIT, Sutherland became Director of Information Processing at ARPA, and later became a professor at Harvard. In 1967 Sutherland was recruited by Evans to join the computer science program at the University of Utah – a development which would turn that department into one of the most important research centers in graphics for nearly a decade thereafter, eventually producing some of the most important pioneers in the field. There Sutherland perfected his HMD; twenty years later, NASA would re-discover his techniques in their virtual reality research. At Utah, Sutherland and Evans were highly sought after consultants by large companies, but they were frustrated at the lack of graphics hardware available at the time, so they started formulating a plan to start their own company.
In 1968, Dave Evans and Ivan Sutherland founded the first computer graphics hardware company, Evans & Sutherland. While Sutherland originally wanted the company to be located in Cambridge, Massachusetts, Salt Lake City was instead chosen due to its proximity to the professors' research group at the University of Utah.
Also in 1968 Arthur Appel described the first ray casting algorithm, the first of a class of ray tracing-based rendering algorithms that have since become fundamental in achieving photorealism in graphics by modeling the paths that rays of light take from a light source, to surfaces in a scene, and into the camera.
In 1969, the ACM initiated A Special Interest Group on Graphics which organizes conferences, graphics standards, and publications within the field of computer graphics. By 1973, the first annual SIGGRAPH conference was held, which has become one of the focuses of the organization. SIGGRAPH has grown in size and importance as the field of computer graphics has expanded over time.