Internet


The Internet is the global system of interconnected computer networks that uses the Internet protocol suite to communicate between networks and devices. It is a network of networks that comprises private, public, academic, business, and government networks of local to global scope, linked by electronic, wireless, and optical networking technologies. The Internet carries a vast range of information services and resources, such as the interlinked hypertext documents and applications of the World Wide Web, electronic mail, discussion groups, internet telephony, streaming media and file sharing.
Most traditional communication media, including telephone, radio, television, paper mail, newspapers, and print publishing, have been transformed by the Internet, giving rise to new media such as email, online music, digital newspapers, news aggregators, and audio and video streaming websites. The Internet has enabled and accelerated new forms of personal interaction through instant messaging, Internet forums, and social networking services. Online shopping has also grown to occupy a significant market across industries, enabling firms to extend brick and mortar presences to serve larger markets. Business-to-business and financial services on the Internet affect supply chains across entire industries.
The origins of the Internet date back to research that enabled the time-sharing of computer resources, the development of packet switching, and the design of computer networks for data communication. The set of communication protocols to enable internetworking on the Internet arose from research and development commissioned in the 1970s by the Defense Advanced Research Projects Agency of the United States Department of Defense in collaboration with universities and researchers across the United States and in the United Kingdom and France.
The Internet has no single centralized governance in either technological implementation or policies for access and usage. Each constituent network sets its own policies. The overarching definitions of the two principal name spaces on the Internet, the Internet Protocol address space and the Domain Name System, are directed by a maintainer organization, the Internet Corporation for Assigned Names and Numbers. The technical underpinning and standardization of the core protocols is an activity of the non-profit Internet Engineering Task Force.

Terminology

The word internetted was used as early as 1849, meaning interconnected or interwoven. The word Internet was used in 1945 by the United States War Department in a radio operator's manual, and in 1974 as the shorthand form of Internetwork. Today, the term Internet most commonly refers to the global system of interconnected computer networks, though it may also refer to any group of smaller networks.
The word Internet may be capitalized as a proper noun, although this is becoming less common. This reflects the tendency in English to capitalize new terms and move them to lowercase as they become familiar. The word is sometimes still capitalized to distinguish the global internet from smaller networks, though many publications, including the AP Stylebook since 2016, recommend the lowercase form in every case. In 2016, the Oxford English Dictionary found that, based on a study of around 2.5 billion printed and online sources, "Internet" was capitalized in 54% of cases.
The terms Internet and World Wide Web are often used interchangeably; it is common to speak of "going on the Internet" when using a web browser to view web pages. However, the World Wide Web, or the Web, is only one of a large number of Internet services. It is the global collection of web pages, documents and other web resources linked by hyperlinks and URLs.

History

1960s

In the 1960s, computer scientists began developing systems for time-sharing of computer resources. J. C. R. Licklider proposed the idea of a universal network while working at Bolt Beranek & Newman and, later, leading the Information Processing Techniques Office at the Advanced Research Projects Agency of the United States Department of Defense. Research into packet switching, one of the fundamental Internet technologies, started in the work of Paul Baran at RAND in the early 1960s and, independently, Donald Davies at the United Kingdom's National Physical Laboratory in 1965.
After the Symposium on Operating Systems Principles in 1967, packet switching from the proposed NPL network was incorporated into the design of the ARPANET, an experimental resource sharing network proposed by ARPA. ARPANET development began with two network nodes which were interconnected between the University of California, Los Angeles and the Stanford Research Institute on 29 October 1969. The third site was at the University of California, Santa Barbara, followed by the University of Utah.

1970s

By the end of 1971, 15 sites were connected to the young ARPANET. Thereafter, the ARPANET gradually developed into a decentralized communications network, connecting remote centers and military bases in the United States. Other user networks and research networks, such as the Merit Network and CYCLADES, were developed in the late 1960s and early 1970s. Early international collaborations for the ARPANET were rare. Connections were made in 1973 to Norway and to Peter Kirstein's research group at University College London, which provided a gateway to British academic networks, the first internetwork for resource sharing.
ARPA projects, the International Network Working Group and commercial initiatives led to the development of various protocols and standards by which multiple separate networks could become a single network, or a network of networks. In 1974, Vint Cerf at Stanford University and Bob Kahn at DARPA published a proposal for "A Protocol for Packet Network Intercommunication". Cerf and his graduate students used the term internet as a shorthand for internetwork in . The Internet Experiment Notes and later RFCs repeated this use. The work of Louis Pouzin and Robert Metcalfe had important influences on the resulting TCP/IP design. National PTTs and commercial providers developed the X.25 standard and deployed it on public data networks.

1980s

The ARPANET initially served as a backbone for the interconnection of regional academic and military networks in the United States to enable resource sharing. Access to the ARPANET was expanded in 1981 when the National Science Foundation funded the Computer Science Network.
In 1982, the Internet Protocol Suite was standardized, which facilitated worldwide proliferation of interconnected networks. TCP/IP network access expanded again in 1986 when the National Science Foundation Network provided access to supercomputer sites in the United States for researchers, first at speeds of 56 kbit/s and later at 1.5 Mbit/s and 45 Mbit/s.
The NSFNet expanded into academic and research organizations in Europe, Australia, New Zealand and Japan in 1988–89. Although other network protocols such as UUCP and PTT public data networks had global reach well before this time, this marked the beginning of the Internet as an intercontinental network. Commercial Internet service providers emerged in 1989 in the United States and Australia. The ARPANET was decommissioned in 1990.

1990s

The linking of commercial networks and enterprises by the early 1990s, as well as the advent of the World Wide Web, marked the beginning of the transition to the modern Internet. Steady advances in semiconductor technology and optical networking created new economic opportunities for commercial involvement in the expansion of the network in its core and for delivering services to the public. In mid-1989, MCI Mail and Compuserve established connections to the Internet, delivering email and public access products to the half million users of the Internet.
Just months later, on 1 January 1990, PSInet launched an alternate Internet backbone for commercial use; one of the networks that added to the core of the commercial Internet of later years. In March 1990, the first high-speed T1 link between the NSFNET and Europe was installed between Cornell University and CERN, allowing much more robust communications than were capable with satellites.
Later in 1990, Tim Berners-Lee began writing WorldWideWeb, the first web browser, after two years of lobbying CERN management. By Christmas 1990, Berners-Lee had built all the tools necessary for a working Web: the HyperText Transfer Protocol 0.9, the HyperText Markup Language, the first Web browser, the first HTTP server software, the first web server, and the first Web pages that described the project itself.
In 1991 the Commercial Internet eXchange was founded, allowing PSInet to communicate with the other commercial networks CERFnet and Alternet. Stanford Federal Credit Union was the first financial institution to offer online Internet banking services to all of its members in October 1994. In 1996, OP Financial Group, also a cooperative bank, became the second online bank in the world and the first in Europe. By 1995, the Internet was fully commercialized in the U.S. when the NSFNet was decommissioned, removing the last restrictions on use of the Internet to carry commercial traffic.
As technology advanced and commercial opportunities fueled reciprocal growth, the volume of Internet traffic started experiencing similar characteristics as that of the scaling of MOS transistors, exemplified by Moore's law, doubling every 18 months. This growth, formalized as Edholm's law, was catalyzed by advances in MOS technology, laser light wave systems, and noise performance.

21st-century

Since 1995, the Internet has tremendously impacted culture and commerce, including the rise of near-instant communication by email, instant messaging, telephony, two-way interactive video calls, and the World Wide Web. Increasing amounts of data are transmitted at higher and higher speeds over fiber optic networks operating at 1 Gbit/s, 10 Gbit/s, or more. The Internet continues to grow, driven by ever-greater amounts of online information and knowledge, commerce, entertainment and social networking services.
During the late 1990s, it was estimated that traffic on the public Internet grew by 100 percent per year, while the mean annual growth in the number of Internet users was thought to be between 20% and 50%. This growth is often attributed to the lack of central administration, which allows organic growth of the network, as well as the non-proprietary nature of the Internet protocols, which encourages vendor interoperability and prevents any one company from exerting too much control over the network.
In November 2006, the Internet was included on USA Todays list of the New Seven Wonders., the estimated total number of Internet users was 2.095 billion. It is estimated that in 1993 the Internet carried only 1% of the information flowing through two-way telecommunication. By 2000 this figure had grown to 51%, and by 2007 more than 97% of all telecommunicated information was carried over the Internet. Modern smartphones can access the Internet through cellular carrier networks, and internet usage by mobile and tablet devices exceeded desktop worldwide for the first time in October 2016., 80% of the world's population were covered by a 4G network.