History of television
The history of television begins with the work of many individuals in the late 19th and early 20th centuries. Constantin Perskyi coined the word television in a paper read to the International Electricity Congress at the World's Fair in Paris on August 24, 1900.
The first practical transmissions of moving images over a radio system used mechanical rotating perforated disks to scan a scene into a time-varying signal that could be reconstructed at a receiver back into an approximation of the original image. Development of television was interrupted by the Second World War. After the end of the war, all-electronic methods of scanning and displaying images became standard. Several different standards for addition of color to transmitted images were developed with different regions using technically incompatible signal standards.
Television broadcasting expanded rapidly after the war, becoming an important mass medium for advertising, propaganda, and entertainment.
Television broadcasts can be distributed over the air by very high frequency and ultra high frequency radio signals from terrestrial transmitting stations, by microwave signals from Earth-orbiting satellites, or by wired transmission to individual consumers by cable television. Many countries have since shifted from the original analog radio transmission methods to relying on digital television standards, providing additional operating features and conserving radio spectrum bandwidth for more profitable uses. Television programming can also be distributed over the Internet.
Funding for television broadcasting varies, but is often subsidized by advertising revenue, by private or governmental organizations prepared to underwrite the cost, or in some countries, by television license fees paid by owners of receivers. Some services, especially carried by cable or satellite, are paid by subscriptions.
Television broadcasting is supported by continuing technical developments such as long-haul microwave networks, which allow distribution of programming over a wide geographic area. Video recording methods allow programming to be edited and replayed for later use. Three-dimensional television has been used commercially but has not received wide consumer acceptance owing to the limitations of display methods.
Mechanical television
systems pioneered methods of mechanically scanning graphics in the early 19th century. The Scottish inventor Alexander Bain introduced the facsimile machine between 1843 and 1846. The English physicist Frederick Bakewell demonstrated a working laboratory version in 1851. The first practical facsimile system, working on telegraph lines, was developed and put into service by the Italian priest Giovanni Caselli from 1856 onward.Willoughby Smith, an English electrical engineer, discovered the photoconductivity of the element selenium in 1873. This led, among other technologies, towards telephotography, a way to send still images through phone lines, as early as in 1895, as well as any kind of electronic image scanning devices, both still and in motion, and ultimately to TV cameras.
Maurice Leblanc
In 1880, French physicist Maurice Leblanc published an article "Etude sur la transmission électrique des impressions lumineuses". Amongst various proposals, it included the idea of using oscillating mirrors. This idea would be tested by various inventors, including the Austro-Hungarian Wilhelm von Szygarto, the French Emile Desbeaux, the Polish Jan Szczepanik, the Austrian Bendict Schöffler, the American engineer Alexander McLean Nicolson and the Hungarian Denes von Mihaly.Nipkow
As a 23-year-old German university student, Paul Julius Gottlieb Nipkow proposed and patented the Nipkow disk in 1884 in Berlin. This was a spinning disk with a spiral pattern of holes in it, so each hole scanned a line of the image.Although he never built a working model of the system, variations of Nipkow's spinning-disk "image rasterizer" became exceedingly common. In a paper presented at the International Electricity Congress at the World's Fair in Paris in August 1900, Constantin Perskyi reviewed the existing electromechanical technologies, mentioning the work of Nipkow and others, and coining the word "television". However, it was not until 1907 that developments in amplification tube technology, by Lee de Forest and Arthur Korn among others, made the design practical.
Rignoux and Fournier
The first demonstration of instantaneous transmission of images was by Georges Rignoux and A. Fournier in Paris in 1909. A matrix of 64 selenium cells, individually wired to a mechanical commutator, served as an electronic retina. In the receiver, a type of Kerr cell modulated the light and a series of mirrors at various angles attached to the edge of a rotating disc scanned the modulated beam onto the display screen. A separate circuit regulated synchronization. The 8×8 pixel resolution in this proof-of-concept demonstration was just sufficient to clearly transmit individual letters of the alphabet. An updated image was transmitted "several times" each second.Rosing
In 1911, Boris Rosing and his student Vladimir Zworykin created a system that used a mechanical mirror-drum scanner to transmit, in Zworykin's words, "very crude images" over wires to the "Braun tube" in the receiver. Moving images were not possible because, in the scanner, "the sensitivity was not enough and the selenium cell was very laggy".Low's Televista
In May 1914, Archibald Low gave the first demonstration of his television system at the Institute of Automobile Engineers in London. He called his system 'Televista'. The events were widely reported worldwide and were generally entitled Seeing By Wireless. The demonstrations had so impressed Harry Gordon Selfridge that he included Televista in his 1914 Scientific and Electrical Exhibition at his store. It also interested Deputy Consul General Carl Raymond Loop, who filled a US consular report from London containing considerable detail about Low's system.Low's invention employed a matrix detector and a mosaic screen with an electro-mechanical scanning mechanism that moved a rotating roller over the cell contacts providing a multiplex signal to the camera/viewer data link. The receiver employed a similar roller and the two rollers were synchronised. It was unlike any other TV system of the 20th Century and in some respects, Low had a digital TV system 80 years before modern digital TV.
World War I began shortly after these demonstrations in London and Low became involved in sensitive military work on UAVs, so did not apply for a patent until 1917. His "Televista" Patent No. 191,405 titled "Improved Apparatus for the Electrical Transmission of Optical Images" was finally published in 1923; delayed possibly for security reasons. The patent states that the scanning roller had a row of conductive contacts corresponding to the cells in each row of the array and arranged to sample each cell in turn as the roller rotated. The receiver's roller was similarly constructed and each revolution addressed a row of cells as the rollers traversed over their array of cells.
Loop's report tells us that, "The receiver is made up of a series of cells operated by the passage of polarized light through thin slats of steel, and at the receiver the object before the transmitter is reproduced as a flickering image" and "The roller is driven by a motor of 3,000 revolutions per minute, and the resulting variations of light are transmitted along an ordinary conducting wire." and the patent states "into each... space I place a selenium cell". Low covered the cells with a liquid dielectric and the roller connected with each cell in turn through this medium as it rotated and traveled over the array. The receiver used bimetallic elements that acted as shutters "transmitting more or less light according to the current passing through them..." as stated in the patent. Low said the main deficiency of the system was the selenium cells used for converting light waves into electric impulses, which responded too slowly thus spoiling the effect. Loop reported that "The system has been tested through a resistance equivalent to a distance of four miles, but in the opinion of Doctor Low there is no reason why it should not be equally effective over far greater distances. The patent states that this connection could be either wired or wireless. The cost of the apparatus is considerable because the conductive sections of the roller are made of platinum..."
In 1914, the demonstrations certainly garnered a lot of media interest, with The Times reporting on 30 May:
On 29 May, the Daily Chronicle reported:
In 1927, Ronald Frank Tiltman asked Low to write the introduction to his book in which he acknowledged Low's work, referring to Low's related patents with an apology that they were of 'too technical a nature for inclusion'. Later in his 1938 patent Low envisioned a much larger 'camera' cell density achieved by a deposition process of cesium alloy on an insulated substrate that was subsequently sectioned to divide it into cells, the essence of today's technology. Low's system failed for various reasons, mostly due to its inability to reproduce an image by reflected light and simultaneously depict gradations of light and shade. It can be added to the list of systems, like that of Boris Rosing, that predominantly reproduced shadows. With subsequent technological advances, many such ideas could be made viable decades later, but at the time they were impractical.
Baird
In 1923, Scottish inventor John Logie Baird envisaged a complete television system that employed the Nipkow disk. Nipkow's was an obscure, forgotten patent and not at all obvious at the time. He created his first prototypes in Hastings, where he was recovering from a serious illness. In late 1924, Baird returned to London to continue his experiments there. On March 25, 1925, Baird gave the first public demonstration of televised silhouette images in motion at Selfridges department store in London. Since human faces had inadequate contrast to show up on his system at this time, he televised cut-outs and by mid-1925 the head of a ventriloquist's dummy he later named "Stooky Bill", whose face was painted to highlight its contrast. "Stooky Bill" also did not complain about the long hours of staying still in front of the blinding level of light used in these experiments. On October 2, 1925, suddenly the dummy's head came through on the screen with incredible clarity.On January 26, 1926, he demonstrated the transmission of images of real human faces for 40 distinguished scientists of the Royal Institution. This is widely regarded as being the world's first public television demonstration. Baird's system used Nipkow disks for both scanning the image and displaying it. A brightly illuminated subject was placed in front of a spinning Nipkow disk set with lenses that swept images across a static photocell. At this time, it is believed that it was a thallium sulfide cell, developed by Theodore Case in the US, that detected the light reflected from the subject. This was transmitted by radio to a receiver unit, where the video signal was applied to a neon bulb behind a similar Nipkow disk synchronized with the first. The brightness of the neon lamp was varied in proportion to the brightness of each spot on the image. As each lens in the disk passed by, one scan line of the image was reproduced. With this early apparatus, Baird's disks had 16 lenses, yet in conjunction with the other discs used produced moving images with 32 scan lines, just enough to recognize a human face. He began with a frame rate of five per second, which was soon increased to a rate of 12 frames per second and 30 scan lines.
In 1927, Baird transmitted a signal over of telephone line between London and Glasgow. In 1928, Baird's company broadcast the first transatlantic television signal, between London and New York, and the first shore-to-ship transmission. In 1929, he became involved in the first experimental mechanical television service in Germany. In November of the same year, Baird and Bernard Natan of Pathé established France's first television company, Télévision-Baird-Natan. In 1931, he made the first outdoor remote broadcast, of the Derby. In 1932, he demonstrated ultra-short wave television. Baird Television Limited's mechanical systems reached a peak of 240 lines of resolution at the company's Crystal Palace studios, and later on BBC television broadcasts in 1936, though for action shots the mechanical system did not scan the televised scene directly. Instead, a 17.5mm film was shot, rapidly developed, and then scanned while the film was still wet.
The Scophony Company's success with their mechanical system in the 1930s enabled them to take their operations to the US when World War II curtailed their business in Britain.