John von Neumann
John von Neumann was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, integrating pure and applied sciences and making major contributions to many fields, including mathematics, physics, economics, computing, and statistics. He was a pioneer in building the mathematical framework of quantum physics, in the development of functional analysis, and in game theory, introducing or codifying concepts including cellular automata, the universal constructor and the digital computer. His analysis of the structure of self-replication preceded the discovery of the structure of DNA.
During World War II, von Neumann worked on the Manhattan Project. He developed the mathematical models behind the explosive lenses used in the implosion-type nuclear weapon. Before and after the war, he consulted for many organizations including the Office of Scientific Research and Development, the Army's Ballistic Research Laboratory, the Armed Forces Special Weapons Project and the Oak Ridge National Laboratory. At the peak of his influence in the 1950s, he chaired a number of Defense Department committees including the Strategic Missile Evaluation Committee and the ICBM Scientific Advisory Committee. He was also a member of the influential Atomic Energy Commission in charge of all atomic energy development in the country. He played a key role alongside Bernard Schriever and Trevor Gardner in the design and development of the United States' first ICBM programs. At that time he was considered the nation's foremost expert on nuclear weaponry and the leading defense scientist at the U.S. Department of Defense.
Von Neumann's contributions and intellectual ability drew praise from colleagues in physics, mathematics, and beyond. His accolades include a Medal of Freedom and a crater on the Moon named in his honor.
Life and education
Family background
Von Neumann was born in Budapest, Kingdom of Hungary, on December 28, 1903, to a wealthy, non-observant Jewish family. His birth name was Neumann János Lajos. In Hungarian, the family name comes first, and his given names are equivalent to John Louis in English.He was the eldest of three brothers; his two younger siblings were Mihály and Miklós. His father, Neumann Miksa, was a banker and held a doctorate in law. He had moved to Budapest from Pécs at the end of the 1880s. Miksa's father and grandfather were born in Ond, Zemplén County, northern Hungary. John's mother was Kann Margit ; her parents were Kann Jákab and Meisels Katalin of the Meisels family. Three generations of the Kann family lived in spacious apartments above the Kann-Heller offices in Budapest; von Neumann's family occupied an 18-room apartment on the top floor.
On February 20, 1913, Emperor Franz Joseph elevated John's father to the Hungarian nobility for his service to the Austro-Hungarian Empire. The Neumann family thus acquired the hereditary appellation Margittai, meaning "of Margitta". The family had no connection with the town; the appellation was chosen in reference to Margaret, as was their chosen coat of arms depicting three marguerites. Neumann János became margittai Neumann János, which he later changed to the German Johann von Neumann.
Child prodigy
Von Neumann was a child prodigy. He, his brothers and his cousins were instructed by governesses. Von Neumann's father believed that knowledge of languages other than their native Hungarian was essential, so the children were tutored in English, French, German and Italian. According to a legend, by age eight, von Neumann was familiar with differential and integral calculus, and by twelve he had read Borel's La Théorie des Fonctions. He was also interested in history, reading Wilhelm Oncken's 46-volume world history series Allgemeine Geschichte in Einzeldarstellungen. One of the rooms in the apartment was converted into a library and reading room.Von Neumann entered the Lutheran Fasori Evangélikus Gimnázium in 1914. Eugene Wigner was a year ahead of von Neumann at the school and soon became his friend.
Although von Neumann's father insisted that he attend school at the grade level appropriate to his age, he agreed to hire private tutors to give von Neumann advanced instruction. At 15, he began to study advanced calculus under the analyst Gábor Szegő. On their first meeting, Szegő was so astounded by von Neumann's mathematical talent and speed that, as recalled by his wife, he came back home with tears in his eyes. By 19, von Neumann had published two major mathematical papers, the second of which gave the modern definition of ordinal numbers, which superseded Georg Cantor's definition. At the conclusion of his education at the gymnasium, he applied for and won the Eötvös Prize, a national award for mathematics.
University studies
According to his friend Theodore von Kármán, von Neumann's father wanted John to follow him into industry, and asked von Kármán to persuade his son not to take mathematics. Von Neumann and his father decided that the best career path was chemical engineering. This was not something that von Neumann had much knowledge of, so it was arranged for him to take a two-year, non-degree course in chemistry at the University of Berlin, after which he sat for the entrance exam to ETH Zurich, which he passed in September 1923. Simultaneously von Neumann entered Pázmány Péter University, then known as the University of Budapest, as a Ph.D. candidate in mathematics. For his thesis, he produced an axiomatization of Cantor's set theory. In 1926, he graduated as a chemical engineer from ETH Zurich and simultaneously passed his final examinations summa cum laude for his Ph.D. in mathematics at the University of Budapest.He then went to the University of Göttingen on a grant from the Rockefeller Foundation to study mathematics under David Hilbert. Hermann Weyl remembers how in the winter of 1926–1927 von Neumann, Emmy Noether, and he would walk through "the cold, wet, rain-wet streets of Göttingen" after class discussing hypercomplex number systems and their representations.
Career and private life
Von Neumann's habilitation was completed on December 13, 1927, and he began to give lectures as a Privatdozent at the University of Berlin in 1928. He was the youngest person elected Privatdozent in the university's history. He began writing nearly one major mathematics paper per month. In 1929, he briefly became a Privatdozent at the University of Hamburg, where the prospects of becoming a tenured professor were better, then in October of that year moved to Princeton University as a visiting lecturer in mathematical physics.Von Neumann was baptized a Catholic in 1930. Shortly afterward, he married Marietta Kövesi, who had studied economics at Budapest University. Von Neumann and Marietta had a daughter, Marina, born in 1935; she would become a professor. The couple divorced on November 2, 1937. On November 17, 1938, von Neumann married Klára Dán.
In 1933 Von Neumann accepted a tenured professorship at the Institute for Advanced Study in New Jersey, when that institution's plan to appoint Hermann Weyl appeared to have failed. His mother, brothers and in-laws followed von Neumann to the United States in 1939. Von Neumann anglicized his name to John, keeping the German-aristocratic surname von Neumann. Von Neumann became a naturalized U.S. citizen in 1937, and immediately tried to become a lieutenant in the U.S. Army's Officers Reserve Corps. He passed the exams but was rejected because of his age.
Klára and John von Neumann were socially active within the local academic community. His white clapboard house on Westcott Road was one of Princeton's largest private residences. He always wore formal suits. He enjoyed Yiddish and "off-color" humor. Von Neumann did some of his best work in noisy, chaotic environments. In Princeton, he received complaints for playing extremely loud German march music. According to Churchill Eisenhart, von Neumann could attend parties until the early hours of the morning and then deliver a lecture at 8:30.
He was known for always being happy to provide others of all ability levels with scientific and mathematical advice. Wigner wrote that he perhaps supervised more work than any other modern mathematician. His daughter wrote that he was very concerned with his legacy in two aspects: his life and the durability of his intellectual contributions to the world.
Many considered him an excellent chairman of committees, deferring rather easily on personal or organizational matters but pressing on technical ones. Herbert York described the many "Von Neumann Committees" that he participated in as "remarkable in style as well as output". The way the committees von Neumann chaired worked directly and intimately with the necessary military or corporate entities became a blueprint for all Air Force long-range missile programs. Many people who had known von Neumann were puzzled by his relationship to the military and to power structures in general. Stanisław Ulam suspected that he had a hidden admiration for people or organizations that could influence the thoughts and decision making of others.
He also maintained his knowledge of languages learnt in his youth. He knew Hungarian, French, German and English fluently, and maintained a conversational level of Italian, Yiddish, Latin and Ancient Greek. His Spanish was less perfect. He had a passion for and encyclopedic knowledge of ancient history, and he enjoyed reading Ancient Greek historians in the original Greek. Ulam suspected they may have shaped his views on how future events could play out and how human nature and society worked in general.
Von Neumann's closest friend in the United States was the mathematician Stanisław Ulam. Von Neumann believed that much of his mathematical thought occurred intuitively; he would often go to sleep with a problem unsolved and know the answer upon waking up. Ulam noted that von Neumann's way of thinking might not be visual, but more aural. Ulam recalled, "Quite independently of his liking for abstract wit, he had a strong appreciation for the more earthy type of comedy and humor".