Physics


Physics is the scientific study of matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. It is one of the most fundamental scientific disciplines. A scientist who specializes in the field of physics is called a physicist.
Physics is one of the oldest academic disciplines. Over much of the past two millennia, physics, chemistry, biology, and certain branches of mathematics were a part of natural philosophy, but during the Scientific Revolution in the 17th century, these natural sciences branched into separate research endeavors. Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry, and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms studied by other sciences and suggest new avenues of research in these and other academic disciplines such as mathematics and philosophy.
Advances in physics often enable new technologies. For example, advances in the understanding of electromagnetism, solid-state physics, and nuclear physics led directly to the development of technologies that have transformed modern society, such as television, computers, domestic appliances, and nuclear weapons; advances in thermodynamics led to the development of industrialization; and advances in mechanics inspired the development of calculus.

History

The word physics comes from the Latin physica, which itself is a borrowing of the Greek φυσική, a term derived from φύσις.

Ancient astronomy

is one of the oldest natural sciences. Early civilizations dating before 3000 BCE, such as the Sumerians, ancient Egyptians, and the Indus Valley Civilization, had a predictive knowledge and a basic awareness of the motions of the Sun, Moon, and stars. The stars and planets, believed to represent gods, were often worshipped. While the explanations for the observed positions of the stars were often unscientific and lacking in evidence, these early observations laid the foundation for later astronomy, as the stars were found to traverse great circles across the sky, which could not explain the positions of the planets.
According to Asger Aaboe, the origins of Western astronomy can be found in Mesopotamia, and all Western efforts in the exact sciences are descended from late Babylonian astronomy. Egyptian astronomers left monuments showing knowledge of the constellations and the motions of the celestial bodies, while Greek poet Homer wrote of various celestial objects in his Iliad and Odyssey; later Greek astronomers provided names, which are still used today, for most constellations visible from the Northern Hemisphere.

Natural philosophy

has its origins in Greece during the Archaic period, when pre-Socratic philosophers like Thales rejected non-naturalistic explanations for natural phenomena and proclaimed that every event had a natural cause. They proposed ideas verified by reason and observation, and many of their hypotheses proved successful in experiment; for example, atomism was found to be correct approximately 2000 years after it was proposed by Leucippus and his pupil Democritus.

Aristotle and Hellenistic physics

During the classical period in Greece and in Hellenistic times, natural philosophy developed along many lines of inquiry. Aristotle , a student of Plato,
wrote on many subjects, including a substantial treatise on "Physics" – in the 4th century BC. Aristotelian physics was influential for about two millennia. His approach mixed some limited observation with logical deductive arguments, but did not rely on experimental verification of deduced statements. Aristotle's foundational work in Physics, though very imperfect, formed a framework against which later thinkers further developed the field. His approach is entirely superseded today.
He explained ideas such as motion with the theory of four elements.
Aristotle believed that each of the four classical elements had its own natural place. Because of their differing densities, each element will revert to its own specific place in the atmosphere. So, because of their weights, fire would be at the top, air underneath fire, then water, then lastly earth. He also stated that when a small amount of one element enters the natural place of another, the less abundant element will automatically go towards its own natural place. For example, if there is a fire on the ground, the flames go up into the air in an attempt to go back into its natural place where it belongs. His laws of motion included: that heavier objects will fall faster, the speed being proportional to the weight and the speed of the object that is falling depends inversely on the density object it is falling through. He also stated that, when it comes to violent motion, the speed that object moves will only be as fast or strong as the measure of force applied to it. The problem of motion and its causes was studied carefully, leading to the philosophical notion of a "prime mover" as the ultimate source of all motion in the world.

Medieval European and Islamic

The Western Roman Empire fell to invaders and internal decay in the fifth century, resulting in a decline in intellectual pursuits in western Europe. By contrast, the Eastern Roman Empire resisted the attacks from invaders and continued to advance various fields of learning, including physics. In the sixth century, John Philoponus challenged the dominant Aristotelian approach to science although much of his work was focused on Christian theology.
In the sixth century, Isidore of Miletus created an important compilation of Archimedes' works that are copied in the Archimedes Palimpsest.
Islamic scholarship inherited Aristotelian physics from the Greeks and during the Islamic Golden Age developed it further.
The most notable innovations under Islamic scholarship were in the field of optics and vision, which came from the works of many scientists like Ibn Sahl, Al-Kindi, Ibn al-Haytham, Al-Farisi and Avicenna. In his Book of Optics Ibn al-Haytham presented the idea of light rays as an alternative to the ancient Greek idea about visual rays. Like Ptolemy, Ibn al-Haytham applied controlled experiments, verifying the laws of refraction and reflection with the new concept of light rays, but still lacking the concept of image formation.

Scientific Revolution

Physics became a separate science when early modern Europeans used experimental and quantitative methods to discover what are now considered to be the laws of physics.
Major developments in this period include the replacement of the geocentric model of the Solar System with the heliocentric Copernican model, the laws governing the motion of planetary bodies, Galileo's pioneering work on telescopes and observational astronomy in the 16th and 17th centuries, and Isaac Newton's discovery and unification of the laws of motion and universal gravitation. Newton, and separately Gottfried Wilhelm Leibniz, developed calculus, the mathematical study of continuous change, and Newton applied it to solve physical problems.

19th century

The discovery of laws in thermodynamics, chemistry, and electromagnetics resulted from research efforts during the Industrial Revolution as energy needs increased. By the end of the 19th century, theories of thermodynamics, mechanics, and electromagnetics matched a wide variety of observations. Taken together these theories became the basis for what would later be called classical physics.
A few experimental results remained inexplicable. Classical electromagnetism presumed a medium, an luminiferous aether to support the propagation of waves, but this medium could not be detected. The intensity of light from hot glowing blackbody objects did not match the predictions of thermodynamics and electromagnetism. The character of electron emission of illuminated metals differed from predictions. These failures, seemingly insignificant in the big picture would upset the physics world in first two decades of the 20th century.

20th century

began in the early 20th century with the work of Max Planck in quantum theory and Albert Einstein's theory of relativity. Both of these theories came about due to inaccuracies in classical mechanics in certain situations. Classical mechanics predicted that the speed of light depends on the motion of the observer, which could not be resolved with the constant speed predicted by Maxwell's equations of electromagnetism. This discrepancy was corrected by Einstein's theory of special relativity, which replaced classical mechanics for fast-moving bodies and allowed for a constant speed of light. Black-body radiation provided another problem for classical physics, which was corrected when Planck proposed that the excitation of material oscillators is possible only in discrete steps proportional to their frequency. This, along with the photoelectric effect and a complete theory predicting discrete energy levels of electron orbitals, led to the theory of quantum mechanics improving on classical physics at very small scales.
Quantum mechanics would come to be pioneered by Werner Heisenberg, Erwin Schrödinger and Paul Dirac. From this early work, and work in related fields, the Standard Model of particle physics was derived. Following the discovery of a particle with properties consistent with the Higgs boson at CERN in 2012, all fundamental particles predicted by the standard model, and no others, appear to exist; however, physics beyond the Standard Model, with theories such as supersymmetry, is an active area of research. Areas of mathematics in general are important to this field, such as the study of probabilities and groups.

Core theories

Physics deals with a wide variety of systems, although certain theories are used by all physicists. Each of these theories was experimentally tested numerous times and found to be an adequate approximation of nature.
These central theories are important tools for research into more specialized topics, and any physicist, regardless of their specialization, is expected to be literate in them. These include classical mechanics, quantum mechanics, thermodynamics and statistical mechanics, electromagnetism, and special relativity.