Pollen


Pollen is a powdery substance produced by most types of flowers of seed plants for the purpose of sexual reproduction. It consists of pollen grains, which produce male gametes.
Pollen grains have a hard coat made of sporopollenin that protects the gametophytes during the process of their movement from the stamens to the pistil of flowering plants, or from the male cone to the female cone of gymnosperms. If pollen lands on a compatible pistil or female cone, it germinates, producing a pollen tube that transfers the sperm to the ovule containing the female gametophyte. Individual pollen grains are small enough to require magnification to see detail. The study of pollen is called palynology and is highly useful in paleoecology, paleontology, archaeology, and forensics.
Pollen in plants is used for transferring haploid male genetic material from the anther of a single flower to the stigma of another in cross-pollination. In a case of self-pollination, this process takes place from the anther of a flower to the stigma of the same flower.
Pollen is infrequently used as food and food supplement. It is often contaminated by agricultural pesticides.

Structure and formation

Pollen itself is not the male gamete. It is a gametophyte, something that could be considered an entire organism, which then produces the male gamete. Each pollen grain contains vegetative cells and a generative cell. In flowering plants the vegetative tube cell produces the pollen tube, and the generative cell divides to form the two sperm nuclei.
Pollen grains come in a wide variety of shapes, sizes, and surface markings characteristic of the species. Pollen grains of pines, firs, and spruces are winged. The smallest pollen grain, that of the forget-me-not, is 2.5–5 μm in diameter. Corn pollen grains are large, about 90–100 μm. Most grass pollen is around 20–25 μm. Some pollen grains are based on geodesic polyhedra like a soccer ball.

Formation

Pollen is produced in the microsporangia in the male cone of a conifer or other gymnosperm or in the anthers of an angiosperm flower.
In angiosperms, during flower development the anther is composed of a mass of cells that appear undifferentiated, except for a partially differentiated dermis. As the flower develops, fertile sporogenous cells, the archespore, form within the anther. The sporogenous cells are surrounded by layers of sterile cells that grow into the wall of the pollen sac. Some of the cells grow into nutritive cells that supply nutrition for the microspores that form by meiotic division from the sporogenous cells. The archespore cells divide by mitosis and differentiate to form pollen mother cells.
In a process called microsporogenesis, four haploid microspores are produced from each diploid pollen mother cell, after meiotic division. After the formation of the four microspores, which are contained by callose walls, the development of the pollen grain walls begins. The callose wall is broken down by an enzyme called callase and the freed pollen grains grow in size and develop their characteristic shape and form a resistant outer wall called the exine and an inner wall called the intine. The exine is what is preserved in the fossil record.
Two basic types of microsporogenesis are recognised, simultaneous and successive. In simultaneous microsporogenesis meiotic steps I and II are completed before cytokinesis, whereas in successive microsporogenesis cytokinesis follows. While there may be a continuum with intermediate forms, the type of microsporogenesis has systematic significance. The predominant form amongst the monocots is successive, but there are important exceptions.
During microgametogenesis, the unicellular microspores undergo mitosis and develop into mature microgametophytes containing the gametes. In some flowering plants, germination of the pollen grain may begin even before it leaves the microsporangium, with the generative cell forming the two sperm cells.

Structure

Except in the case of some submerged aquatic plants, the mature pollen grain has a double wall. The vegetative and generative cells are surrounded by a thin delicate wall of unaltered cellulose called the endospore or intine, and a tough resistant outer cuticularized wall composed largely of sporopollenin called the exospore or exine. The exine often bears spines or warts, or is variously sculptured, and the character of the markings is often of value for identifying genus, species, or even cultivar or individual.
The spines may be less than a micron in length referred to as spinulose, or longer than a micron referred to as echinate. Various terms also describe the sculpturing such as reticulate, a net like appearance consisting of elements separated from each other by a lumen. These reticulations may also be referred to as brochi.
The pollen wall protects the sperm while the pollen grain is moving from the anther to the stigma; it protects the vital genetic material from drying out and solar radiation. The pollen grain surface is covered with waxes and proteins, which are held in place by structures called sculpture elements on the surface of the grain. The outer pollen wall, which prevents the pollen grain from shrinking and crushing the genetic material during desiccation, is composed of two layers. These two layers are the tectum and the foot layer, which is just above the intine. The tectum and foot layer are separated by a region called the columella, which is composed of strengthening rods. The outer wall is constructed with a resistant biopolymer called sporopollenin.
Pollen apertures are regions of the pollen wall that may involve exine thinning or a significant reduction in exine thickness. They allow shrinking and swelling of the grain caused by changes in moisture content. The process of shrinking the grain is called harmomegathy. Elongated apertures or furrows in the pollen grain are called colpi or sulci. Apertures that are more circular are called pores. Colpi, sulci and pores are major features in the identification of classes of pollen. Pollen may be referred to as inaperturate or aperturate.
The aperture may have a lid, hence is described as operculate. However the term inaperturate covers a wide range of morphological types, such as functionally inaperturate and omniaperturate. Inaperaturate pollen grains often have thin walls, which facilitates pollen tube germination at any position. Terms such as uniaperturate and triaperturate refer to the number of apertures present. Spiraperturate refers to one or more apertures being spirally shaped.
The orientation of furrows classifies the pollen as sulcate or colpate. Sulcate pollen has a furrow across the middle of what was the outer face when the pollen grain was in its tetrad. If the pollen has only a single sulcus, it is described as monosulcate, has two sulci, as bisulcate, or more, as polysulcate. Colpate pollen has furrows other than across the middle of the outer faces, and similarly may be described as polycolpate if more than two. Syncolpate pollen grains have two or more colpi that are fused at the ends. Eudicots have pollen with three colpi or with shapes that are evolutionarily derived from tricolpate pollen. The evolutionary trend in plants has been from monosulcate to polycolpate or polyporate pollen.
Additionally, gymnosperm pollen grains often have air bladders, or vesicles, called sacci. The sacci are not actually balloons, but are sponge-like, and increase the buoyancy of the pollen grain and help keep it aloft in the wind, as most gymnosperms are anemophilous. Pollen can be monosaccate, or bisaccate. Modern pine, spruce, and yellowwood trees all produce saccate pollen.

Pollination

The transfer of pollen grains to the female reproductive structure is called pollination. Pollen transfer is frequently portrayed as a sequential process that begins with placement on the vector, moves through travel, and ends with deposition. This transfer can be mediated by the wind, in which case the plant is described as anemophilous. Anemophilous plants typically produce great quantities of very lightweight pollen grains, sometimes with air-sacs.
Non-flowering seed plants are characteristically anemophilous. Anemophilous flowering plants generally have inconspicuous flowers. Entomophilous plants produce pollen that is relatively heavy, sticky and protein-rich, for dispersal by insect pollinators attracted to their flowers. Many insects and some mites are specialized to feed on pollen, and are called palynivores.
In non-flowering seed plants, pollen germinates in the pollen chamber, located beneath the micropyle, underneath the integuments of the ovule. A pollen tube is produced, which grows into the nucellus to provide nutrients for the developing sperm cells. Sperm cells of Pinophyta and Gnetophyta are without flagella, and are carried by the pollen tube, while those of Cycadophyta and Ginkgophyta have many flagella.
When placed on the stigma of a flowering plant, under favorable circumstances, a pollen grain puts forth a pollen tube, which grows down the tissue of the style to the ovary, and makes its way along the placenta, guided by projections or hairs, to the micropyle of an ovule. The nucleus of the tube cell has meanwhile passed into the tube, as does also the generative nucleus, which divides to form two sperm cells. The sperm cells are carried to their destination in the tip of the pollen tube. Double-strand breaks in DNA that arise during pollen tube growth appear to be efficiently repaired in the generative cell that carries the male genomic information to be passed on to the next plant generation. However, the vegetative cell that is responsible for tube elongation appears to lack this DNA repair capability.