Genome


A genome is all the genetic information of an organism or cell. It consists of nucleotide sequences of DNA. The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as regulatory sequences, and often a substantial fraction of junk DNA with no evident function. Almost all eukaryotes have mitochondria and a small mitochondrial genome. Algae and plants also contain chloroplasts with a chloroplast genome.
The study of the genome is called genomics. The genomes of many organisms have been sequenced and various regions have been annotated. The first genome to be sequenced was that of the virus φX174 in 1977; the first genome sequence of a prokaryote was published in 1995; the yeast genome was the first eukaryotic genome to be sequenced in 1996. The Human Genome Project was started in October 1990, and the first draft sequences of the human genome were reported in February 2001.

Origin of the term

The term genome was created in 1920 by Hans Winkler, professor of botany at the University of Hamburg, Germany. The website Oxford Dictionaries and the Online Etymology Dictionary suggest the name is a blend of the words gene and chromosome. However, see omics for a more thorough discussion. A few related -ome words already existed, such as biome and rhizome, forming a vocabulary into which genome fits systematically.

Definition

The term "genome" usually refers to the DNA molecules that carry the genetic information in an organism, but sometimes it is uncertain which molecules to include; for example, bacteria usually have one or two large DNA molecules that contain all of the essential genetic material but they also contain smaller extrachromosomal plasmid molecules that carry important genetic information. In the scientific literature, the term 'genome' usually refers to the large chromosomal DNA molecules in bacteria.

Nuclear genome

Eukaryotic genomes are even more difficult to define because almost all eukaryotic species contain nuclear chromosomes plus extra DNA molecules in the mitochondria. In addition, algae and plants have chloroplast DNA. Most textbooks make a distinction between the nuclear genome and the organelle genomes so when they speak of, say, the human genome, they are only referring to the genetic material in the nucleus. This is the most common use of 'genome' in the scientific literature.

Ploidy

Most eukaryotes are diploid, meaning that there are two of each chromosome in the nucleus but the 'genome' refers to only one copy of each chromosome. Some eukaryotes have distinctive sex chromosomes, such as the X and Y chromosomes of mammals, so the technical definition of the genome must include both copies of the sex chromosomes. For example, the standard reference genome of humans consists of one copy of each of the 22 autosomes plus one X chromosome and one Y chromosome.

Sequencing and mapping

A genome sequence is the complete list of the nucleotides that make up all the chromosomes of an individual or a species. Within a species, the vast majority of nucleotides are identical between individuals, but sequencing multiple individuals is necessary to understand the genetic diversity.
In 1976, Walter Fiers at the University of Ghent was the first to establish the complete nucleotide sequence of a viral RNA-genome. The next year, Fred Sanger completed the first DNA-genome sequence: Phage X174, of 5386 base pairs. The first bacterial genome to be sequenced was that of Haemophilus influenzae, completed by a team at The Institute for Genomic Research in 1995. A few months later, the first eukaryotic genome was completed, with sequences of the 16 chromosomes of budding yeast Saccharomyces cerevisiae published as the result of a European-led effort begun in the mid-1980s. The first genome sequence for an archaeon, Methanococcus jannaschii, was completed in 1996, again by The Institute for Genomic Research.
The development of new technologies has made genome sequencing dramatically cheaper and easier, and the number of complete genome sequences is growing rapidly. The US National Institutes of Health maintains one of several comprehensive databases of genomic information. Among the thousands of completed genome sequencing projects include those for rice, a mouse, the plant Arabidopsis thaliana, the puffer fish, and the bacteria E. coli. In December 2013, scientists first sequenced the entire genome of a Neanderthal, an extinct species of humans. The genome was extracted from the toe bone of a 130,000-year-old Neanderthal found in a Siberian cave.

Viral genomes

can be composed of either RNA or DNA. The genomes of RNA viruses can be either single-stranded RNA or double-stranded RNA, and may contain one or more separate RNA molecules. DNA viruses can have either single-stranded or double-stranded genomes. Most DNA virus genomes are composed of a single, linear molecule of DNA, but some are made up of a circular DNA molecule.

Prokaryotic genomes

Prokaryotes and eukaryotes have DNA genomes. Archaea and most bacteria have a single circular chromosome, however, some bacterial species have linear or multiple chromosomes. If the DNA is replicated faster than the bacterial cells divide, multiple copies of the chromosome can be present in a single cell, and if the cells divide faster than the DNA can be replicated, multiple replication of the chromosome is initiated before the division occurs, allowing daughter cells to inherit complete genomes and already partially replicated chromosomes. Most prokaryotes have very little repetitive DNA in their genomes. However, some symbiotic bacteria have reduced genomes and a high fraction of pseudogenes: only ~40% of their DNA encodes proteins.
Some bacteria have auxiliary genetic material, also part of their genome, which is carried in plasmids. For this, the word genome should not be used as a synonym of chromosome.

Eukaryotic genomes

Eukaryotic genomes are composed of one or more linear DNA chromosomes. The number of chromosomes varies widely from Jack jumper ants and an asexual nemotode, which each have only one pair, to a fern species that has 720 pairs. It is surprising the amount of DNA that eukaryotic genomes contain compared to other genomes. The amount is even more than what is necessary for DNA protein-coding and noncoding genes because eukaryotic genomes show as much as 64,000-fold variation in their sizes. However, this special characteristic is caused by the presence of repetitive DNA, and transposable elements.
A typical human cell has two copies of each of 22 autosomes, one inherited from each parent, plus two sex chromosomes, making it diploid. Gametes, such as ova, sperm, spores, and pollen, are haploid, meaning they carry only one copy of each chromosome. In addition to the chromosomes in the nucleus, organelles such as the chloroplasts and mitochondria have their own DNA. Mitochondria are sometimes said to have their own genome often referred to as the "mitochondrial genome". The DNA found within the chloroplast may be referred to as the "plastome". Like the bacteria they originated from, mitochondria and chloroplasts have a circular chromosome.
Unlike prokaryotes where exon-intron organization of protein coding genes exists but is rather exceptional, eukaryotes generally have these features in their genes and their genomes contain variable amounts of repetitive DNA. In mammals and plants, the majority of the genome is composed of repetitive DNA.

DNA sequencing

High-throughput technology makes sequencing to assemble new genomes accessible to everyone. Sequence polymorphisms are typically discovered by comparing resequenced isolates to a reference, whereas analyses of coverage depth and mapping topology can provide details regarding structural variations such as chromosomal translocations and segmental duplications.

Coding sequences

DNA sequences that carry the instructions to make proteins are referred to as coding sequences. The proportion of the genome occupied by coding sequences varies widely. A larger genome does not necessarily contain more genes, and the proportion of non-repetitive DNA decreases along with increasing genome size in complex eukaryotes.

Noncoding sequences

Noncoding sequences include introns, sequences for non-coding RNAs, regulatory regions, and repetitive DNA. Noncoding sequences make up 98% of the human genome. There are two categories of repetitive DNA in the genome: tandem repeats and interspersed repeats.

Tandem repeats

Short, non-coding sequences that are repeated head-to-tail are called tandem repeats. Microsatellites consisting of 2–5 basepair repeats, while minisatellite repeats are 30–35 bp. Tandem repeats make up about 4% of the human genome and 9% of the fruit fly genome. Tandem repeats can be functional. For example, telomeres are composed of the tandem repeat TTAGGG in mammals, and they play an important role in protecting the ends of the chromosome.
In other cases, expansions in the number of tandem repeats in exons or introns can cause disease. For example, the human gene huntingtin typically contains 6–29 tandem repeats of the nucleotides CAG. An expansion to over 36 repeats results in Huntington's disease, a neurodegenerative disease. Twenty human disorders are known to result from similar tandem repeat expansions in various genes. The mechanism by which proteins with expanded polygulatamine tracts cause death of neurons is not fully understood. One possibility is that the proteins fail to fold properly and avoid degradation, instead accumulating in aggregates that also sequester important transcription factors, thereby altering gene expression.
Tandem repeats are usually caused by slippage during replication, unequal crossing-over and gene conversion.