Sirius
Sirius is the brightest star in the night sky, located in the southern constellation of Canis Major. Its name is derived from the Greek word Σείριος. The star is designated Canis Majoris, Latinized to Alpha Canis Majoris, and abbreviated CMa or Alpha CMa. With a visual apparent magnitude of −1.46, Sirius is almost twice as bright as Canopus, the next brightest star. Sirius is a binary star consisting of a main-sequence star of spectral type A0 or A1, termed Sirius A, and a faint white dwarf companion of spectral type DA2, termed Sirius B. The distance between the two varies between 8.2 and 31.5 astronomical units as they orbit every 50 years.
Sirius appears bright because of its intrinsic luminosity and its proximity to the Solar System. At a distance of, the Sirius system is one of Earth's nearest neighbours. Sirius is gradually moving closer to the Solar System and it is expected to increase in brightness slightly over the next 60,000 years to reach a peak magnitude of −1.68.
Coincidentally, at about the same time, Sirius will take its turn as the southern Pole Star, around the year 66,270 AD. In that year, Sirius will come to within 1.6 degrees of the south celestial pole. This is due to axial precession and proper motion of Sirius itself which moves slowly in the SSW direction, so it will be visible from the southern hemisphere only.
After that time, its distance will begin to increase, and it will become fainter, but it will continue to be the brightest star in the Earth's night sky for approximately the next 210,000 years, at which point Vega, another A-type star that is intrinsically more luminous than Sirius, becomes the brightest star.
Sirius A is about twice as massive as the Sun and has an absolute visual magnitude of +1.43. It is 25 times as luminous as the Sun, but has a significantly lower luminosity than other bright stars such as Canopus, Betelgeuse, or Rigel. The system is between 200 and 300 million years old. It was originally composed of two bright bluish stars. The initially more massive of these, Sirius B, consumed its hydrogen fuel and became a red giant before shedding its outer layers and collapsing into its current state as a white dwarf around 120 million years ago.
Sirius is colloquially known as the "Dog Star", reflecting its prominence in its constellation, Canis Major. The heliacal rising of Sirius marked the flooding of the Nile in Ancient Egypt and the "dog days" of summer for the ancient Greeks, while to the Polynesians, mostly in the Southern Hemisphere, the star marked winter and was an important reference for their navigation around the Pacific Ocean.
Etymology
The proper name "Sirius" comes from the Latin Sīrius, from the Ancient Greek . The Greek word itself may have been imported from elsewhere before the Archaic period, one authority suggesting a link with the Egyptian god Osiris. The name's earliest recorded use dates from the 7th century BC in Hesiod's poetic work Works and Days. In 2016, the International Astronomical Union organized a Working Group on Star Names to catalog and standardize proper names for stars. The WGSN's first bulletin of July 2016 included a table of the first two batches of names approved by the WGSN, which included Sirius for the star α Canis Majoris A. It is now so entered in the IAU Catalog of Star Names.Sirius has over 50 other designations and names attached to it. In Geoffrey Chaucer's essay Treatise on the Astrolabe, it bears the name Alhabor and is depicted by a hound's head. This name is widely used on medieval astrolabes from Western Europe. In Sanskrit it is known as Mrgavyadha "deer hunter", or Lubdhaka "hunter". As Mrgavyadha, the star represents Rudra. The star is referred to as Makarajyoti in Malayalam and has religious significance to the pilgrim center Sabarimala. In Scandinavia, the star has been known as Lokabrenna. In the astrology of the Middle Ages, Sirius was a Behenian fixed star, associated with beryl and juniper. Its astrological symbol was listed by Heinrich Cornelius Agrippa.
Observational history
As the brightest star in the night sky, Sirius appears in some of the earliest astronomical records. Its displacement from the ecliptic causes its heliacal rising to be remarkably regular compared to other stars, with a period of almost exactly 365.25 days holding it constant relative to the solar year. This rising occurs at Cairo on 19 July, placing it just before the onset of the annual flooding of the Nile during antiquity. Owing to the flood's own irregularity, the extreme precision of the star's return made it important to the ancient Egyptians, who worshipped it as the goddess Sopdet (, "Triangle";Kinematics
In 1717, Edmond Halley discovered the proper motion of the hitherto presumed fixed stars after comparing contemporary astrometric measurements with those from the second century AD given in Ptolemy's Almagest. The bright stars Aldebaran, Arcturus and Sirius were noted to have moved significantly; Sirius had progressed about 30 arcminutes to the southwest.In 1868, Sirius became the first star to have its velocity measured, the beginning of the study of celestial radial velocities. Sir William Huggins examined the spectrum of the star and observed a red shift. He concluded that Sirius was receding from the Solar System at about 40 km/s. Compared to the modern value of −5.5 km/s, this was an overestimate and had the wrong sign; the minus sign means that it is approaching the Sun.
Distance
In his 1698 book, Cosmotheoros, Christiaan Huygens estimated the distance to Sirius at 27,664 times the distance from the Earth to the Sun. There were several unsuccessful attempts to measure the parallax of Sirius: by Jacques Cassini ; by some astronomers using Lacaille's observations made at the Cape of Good Hope ; by Piazzi ; using Lacaille's observations made at Paris, more numerous and certain than those made at the Cape ; by Bessel.Scottish astronomer Thomas Henderson used his observations made in 1832–1833 and South African astronomer Thomas Maclear's observations made in 1836–1837, to determine that the value of the parallax was 0.23 arcsecond, and error of the parallax was estimated not to exceed a quarter of a second, or as Henderson wrote in 1839, "On the whole we may conclude that the parallax of Sirius is not greater than half a second in space; and that it is probably much less." Astronomers adopted a value of 0.25 arcsecond for much of the 19th century. It is now known to have a parallax of nearly.
The Hipparcos parallax for Sirius indicates a distance of, statistically accurate to plus or minus 0.04 light years. Sirius B is generally assumed to be at the same distance. Sirius B has a Gaia Data Release 3 parallax with a much smaller statistical margin of error, giving a distance of, but it is flagged as having a very large value for astrometric excess noise, which indicates that the parallax value may be unreliable.
Discovery of Sirius B
In a letter dated 10 August 1844, the German astronomer Friedrich Wilhelm Bessel deduced from changes in the proper motion of Sirius that it had an unseen companion. On 31 January 1862, American telescope-maker and astronomer Alvan Graham Clark first observed the faint companion, which is now called Sirius B. This happened during testing of an aperture great refractor telescope for Dearborn Observatory, which was one of the largest refracting telescope lenses in existence at the time, and the largest telescope in the United States. Sirius B's sighting was confirmed on 8 March with smaller telescopes.The visible star is now sometimes known as Sirius A. Since 1894, some apparent orbital irregularities in the Sirius system have been observed, suggesting a third very small companion star, but this has never been confirmed. The best fit to the data indicates a six-year orbit around Sirius A and a mass of. This star would be five to ten magnitudes fainter than the white dwarf Sirius B, which would make it difficult to observe. Observations published in 2008 were unable to detect either a third star or a planet. An apparent "third star" observed in the 1920s is now believed to be a background object.
In 1915, Walter Sydney Adams, using a reflector at Mount Wilson Observatory, observed the spectrum of Sirius B and determined that it was a faint whitish star. This led astronomers to conclude that it was a white dwarf—the second to be discovered. The diameter of Sirius A was first measured by Robert Hanbury Brown and Richard Q. Twiss in 1959 at Jodrell Bank using their stellar intensity interferometer. In 2005, using the Hubble Space Telescope, astronomers determined that Sirius B has nearly the diameter of the Earth,, with a mass 102% of the Sun's.
Colour controversy
Around the year 150 AD, Claudius Ptolemy of Alexandria, an ethnic Greek Egyptian astronomer of the Roman period, mapped the stars in Books VII and VIII of his Almagest, in which he used Sirius as the location for the globe's central meridian. He described Sirius as reddish, along with five other stars, Betelgeuse, Antares, Aldebaran, Arcturus, and Pollux, all of which are at present observed to be of orange or red hue. The discrepancy was first noted by amateur astronomer Thomas Barker, squire of Lyndon Hall in Rutland, who prepared a paper and spoke at a meeting of the Royal Society in London in 1760. The existence of other stars changing in brightness gave credibility to the idea that some may change in colour too; Sir John Herschel noted this in 1839, possibly influenced by witnessing Eta Carinae two years earlier. Thomas J.J. See resurrected discussion on red Sirius with the publication of several papers in 1892, and a final summary in 1926. He cited not only Ptolemy but also the poet Aratus, the orator Cicero, and general Germanicus all calling the star red, though acknowledging that none of the latter three authors were astronomers, the last two merely translating Aratus's poem Phaenomena. Seneca had described Sirius as being of a deeper red than Mars. It is therefore possible that the description as red is a poetic metaphor for ill fortune. In 1985, German astronomers Wolfhard Schlosser and Werner Bergmann published an account of an 8th-century Lombardic manuscript, which contains De cursu stellarum ratio by St. Gregory of Tours. The Latin text taught readers how to determine the times of nighttime prayers from positions of the stars, and a bright star described as rubeola was claimed to be Sirius. The authors proposed this as evidence that Sirius B had been a red giant at the time of observation. Other scholars replied that it was likely St. Gregory had been referring to Arcturus.It is notable that not all ancient observers saw Sirius as red. The 1st-century poet Marcus Manilius described it as "sea-blue", as did the 4th-century Avienius. Furthermore, Sirius was consistently reported as a white star in ancient China: a detailed re-evaluation of Chinese texts from the 2nd century BC up to the 7th century AD concluded that all such reliable sources are consistent with Sirius being white.
Nevertheless, historical accounts referring to Sirius as red are sufficiently extensive to lead researchers to seek possible physical explanations. Proposed theories fall into two categories: intrinsic and extrinsic. Intrinsic theories postulate a real change in the Sirius system over the past two millennia, of which the most widely discussed is the proposal that the white dwarf Sirius B was a red giant as recently as 2000 years ago. Extrinsic theories are concerned with the possibility of transient reddening in an intervening medium through which the star is observed, such as might be caused by dust in the interstellar medium, or by particles in the terrestrial atmosphere.
The possibility that stellar evolution of either Sirius A or Sirius B could be responsible for the discrepancy has been rejected on the grounds that the timescale of thousands of years is orders of magnitude too short and that there is no sign of the nebulosity in the system that would be expected had such a change taken place. Similarly, the presence of a third star sufficiently luminous to affect the visible colour of the system in recent millennia is inconsistent with observational evidence. Intrinsic theories may therefore be disregarded. Extrinsic theories based on reddening by interstellar dust are similarly implausible. A transient dust cloud passing between the Sirius system and an observer on Earth would indeed redden the appearance of the star to some degree, but reddening sufficient to cause it to appear similar in colour to intrinsically red bright stars such as Betelgeuse and Arcturus would also dim the star by several magnitudes, inconsistent with historical accounts: indeed, the dimming would be sufficient to render the colour of the star imperceptible to the human eye without the aid of a telescope.
Extrinsic theories based on optical effects in the Earth's atmosphere are better supported by available evidence. Scintillations caused by atmospheric turbulence result in rapid, transient changes in the apparent colour of the star, especially when observed near the horizon, although with no particular preference for red. However, systematic reddening of the star's light results from absorption and scattering by particles in the atmosphere, exactly analogous to the redness of the Sun at sunrise and sunset. Because the particles that cause reddening in the Earth's atmosphere are different than those that cause reddening in the interstellar medium, there is far less dimming of the starlight, and in the case of Sirius the change in colour can be seen without the aid of a telescope. There may be cultural reasons to explain why some ancient observers might have reported the colour of Sirius preferentially when it was situated low in the sky. In several Mediterranean cultures, the local visibility of Sirius at heliacal rising and setting was thought to have astrological significance and was thus subject to systematic observation and intense interest. Thus Sirius, more than any other star, was observed and recorded while close to the horizon. Other contemporary cultures, such as Chinese, lacking this tradition, recorded Sirius only as white.