Color television


Color television or colour television is a television transmission technology that also includes color information for the picture, so the video image can be displayed in color on the television set. It improves on the monochrome or black-and-white television technology, which displays the image in shades of gray. Television broadcasting stations and networks in most parts of the world transitioned from black-and-white to color broadcasting between the 1960s and the 1980s. The invention of color television standards was an important part of the history and technology of television.
Transmission of color images using mechanical scanners had been conceived as early as the 1880s. A demonstration of mechanically scanned color television was given by John Logie Baird in 1928, but its limitations were apparent even then. Development of electronic scanning and display made a practical system possible. Monochrome transmission standards were developed prior to World War II, but civilian electronics development was frozen during much of the war. In August 1944, Baird gave the world's first demonstration of a practical fully electronic color television display. In the United States, competing color standards were developed, finally resulting in the NTSC color standard that was compatible with the prior monochrome system. Although the NTSC color standard was proclaimed in 1953, and limited programming soon became available, it was not until the early 1970s that color television in North America outsold black-and-white units. Color broadcasting in Europe did not standardize on the PAL or SECAM formats until the 1960s.
Broadcasters began to upgrade from analog color television technology to higher resolution digital television ; the transition year varies by country. While the changeover is complete in many countries, analog television still remains in use in some countries.

Development

The human eye's detection system in the retina consists primarily of two types of light detectors: rod cells that capture light when there is not much of it available, and the cone cells that detect light of certain wavelengths when it is bright enough, and are responsible for color. A typical retina contains 4.5 million to 6 million cones, which are divided into three types, each one with a characteristic profile of excitability by different wavelengths of the spectrum of visible light.
The eye has limited bandwidth to the rest of the visual system, estimated at just under 8 Mbit/s. This manifests itself in a number of ways, but the most important in terms of producing moving images is the way that a series of still images displayed in quick succession will appear to be continuous smooth motion. This illusion starts to work at about 16 frames per second, and common motion pictures use 24 FPS. Television, using power from the electrical grid, historically tuned its rate in order to avoid interference with the alternating current being supplied – in North America, some Central and South American countries, Taiwan, Korea, part of Japan, the Philippines, and a few other countries, this was 60 video fields per second to match the 60 Hz power, while in most other countries it was 50 fields per second to match the 50 Hz power. The NTSC color system changed from the black-and-white 60-fields-per-second standard to 59.94 fields per second to make the color circuitry simpler; the 1950s TV sets had matured enough that the power frequency/field rate mismatch was no longer important. Modern TV sets can display multiple field rates while accepting power at various frequencies.
In its most basic form, a color broadcast can be created by broadcasting three monochrome images, one each in the three colors of red, green, and blue. When displayed together or in rapid succession, these images will blend together to produce a full-color image as seen by the viewer. To do so without making the images flicker, the refresh time of all three images put together would have to be above the critical limit, and generally the same as a single black and white image. This would require three times the number of images to be sent in the same time, greatly increasing the amount of radio bandwidth required to send the complete signal and thus similarly increasing the required radio spectrum. Early plans for color television in the United States included a move from very high frequency to ultra high frequency to open up additional spectrum.
One of the great technical challenges of introducing color broadcast television was the desire to conserve bandwidth. In the United States, after considerable research, the National Television Systems Committee approved an all-electronic system developed by RCA that encoded the color information separately from the brightness information and greatly reduced the resolution of the color information in order to conserve bandwidth. The brightness image remained compatible with existing black-and-white television sets at slightly reduced resolution, while color-capable televisions could decode the extra information in the signal and produce a limited-resolution color display. The higher resolution black-and-white and lower resolution color images combine in the eye to produce a seemingly high-resolution color image. The NTSC standard represented a major technical achievement.

Early television

Experiments with facsimile image transmission systems that used radio broadcasts to transmit images date to the 19th century. It was not until the 20th century that advances in electronics and light detectors made television practical. A key problem was the need to convert a 2D image into a "1D" radio signal; some form of image scanning was needed to make this work. Early systems generally used a device known as a "Nipkow disk", which was a spinning disk with a series of holes punched in it that caused a spot to scan across and down the image. A single photodetector behind the disk captured the image brightness at any given spot, which was converted into a radio signal and broadcast. A similar disk was used at the receiver side, with a light source behind the disk instead of a detector.
A number of such mechanical television systems were being used experimentally in the 1920s. The best-known was John Logie Baird's, which was actually used for regular public broadcasting in Britain for several years. Indeed, Baird's system was demonstrated to members of the Royal Institution in London in 1926 in what is generally recognized as the first demonstration of a true, working television system. In spite of these early successes, all mechanical television systems shared a number of serious problems. Being mechanically driven, perfect synchronization of the sending and receiving discs was not easy to ensure, and irregularities could result in major image distortion. Another problem was that the image was scanned within a small, roughly rectangular area of the disk's surface, so that larger, higher-resolution displays required increasingly unwieldy disks and smaller holes that produced increasingly dim images. Rotating drums bearing small mirrors set at progressively greater angles proved more practical than Nipkow discs for high-resolution mechanical scanning, allowing images of 240 lines and more to be produced, but such delicate, high-precision optical components were not commercially practical for home receivers.
It was clear to a number of developers that a completely electronic scanning system would be superior, and that the scanning could be achieved in a vacuum tube via electrostatic or magnetic means. Converting this concept into a usable system took years of development and several independent advances. The two key advances were Philo Farnsworth's electronic scanning system, and Vladimir Zworykin's Iconoscope camera. The Iconoscope, based on Kálmán Tihanyi's early patents, superseded the Farnsworth-system. With these systems, the BBC began regularly scheduled black-and-white television broadcasts in 1936, but these were shut down again with the start of World War II in 1939. In this time thousands of television sets had been sold. The receivers developed for this program, notably those from Pye Ltd., played a key role in the development of radar.
By 22 March 1935, 180-line black-and-white television programs were being broadcast from the Paul Nipkow TV station in Berlin. In 1936, under the guidance of the Minister of Public Enlightenment and Propaganda, Joseph Goebbels, direct transmissions from fifteen mobile units at the Olympic Games in Berlin were transmitted to selected small television houses in Berlin and Hamburg.
In 1941, the first NTSC meetings produced a single standard for US broadcasts. US television broadcasts began in earnest in the immediate post-war era, and by 1950 there were 6 million televisions in the United States.

All-mechanical color

The basic idea of using three monochrome images to produce a color image had been experimented with almost as soon as black-and-white televisions had first been built.
Among the earliest published proposals for television was one by Maurice Le Blanc in 1880 for a color system, including the first mentions in television literature of line and frame scanning, although he gave no practical details. Polish inventor Jan Szczepanik patented a color television system in 1897, using a selenium photoelectric cell at the transmitter and an electromagnet controlling an oscillating mirror and a moving prism at the receiver. But his system contained no means of analyzing the spectrum of colors at the transmitting end, and could not have worked as he described it. An Armenian inventor, Hovannes Adamian, also experimented with color television as early as 1907. The first color television project is claimed by him, and was patented in Germany on 31 March 1908, patent number 197183, then in Britain, on 1 April 1908, patent number 7219, in France and in Russia in 1910.
Shortly after his practical demonstration of black and white television, on 3 July 1928, Baird demonstrated the world's first color transmission. This used scanning discs at the transmitting and receiving ends with three spirals of apertures, each spiral with filters of a different primary color; and three light sources, controlled by the signal, at the receiving end, with a commutator to alternate their illumination. The demonstration was of a young girl wearing different colored hats. The girl, Noele Gordon, later became a TV actress in the soap opera Crossroads. Baird also made the world's first color over-the-air broadcast on 4 February 1938, sending a mechanically scanned 120-line image from Baird's Crystal Palace studios to a projection screen at London's Dominion Theatre.
Mechanically scanned color television was also demonstrated by Bell Laboratories in June 1929 using three complete systems of photoelectric cells, amplifiers, glow-tubes, and color filters, with a series of mirrors to superimpose the red, green, and blue images into one full-color image.