William Whewell
William Whewell was an English polymath. He was Master of Trinity College, Cambridge. In his time as a student there, he achieved distinction in both poetry and mathematics.
The breadth of Whewell's endeavours is his most remarkable feature. In a time of increasing specialisation, Whewell belonged in an earlier era when natural philosophers investigated widely. He published work in mechanics, physics, geology, astronomy, and economics, while also composing poetry, writing a Bridgewater Treatise, translating the works of Goethe, and writing sermons and theological tracts. In mathematics, Whewell introduced what is now called the Whewell equation, defining the shape of a curve without reference to an arbitrarily chosen coordinate system. He also organized thousands of volunteers internationally to study ocean tides, in what is now considered one of the first citizen science projects. He received the Royal Medal for this work in 1837.
One of Whewell's greatest gifts to science was his word-smithing. He corresponded with many in his field and helped them come up with neologisms for their discoveries. Whewell coined, among other terms, scientist, physicist, linguistics, consilience, catastrophism, uniformitarianism, and astigmatism; he suggested to Michael Faraday the terms electrode, ion, dielectric, anode, and cathode.
Early life, education and marriages
Whewell was born in Lancaster, the son of John Whewell and his wife, Elizabeth Bennison.His father was a master carpenter, and wished him to follow his trade, but William's success in mathematics at Lancaster Royal Grammar School and Heversham grammar school won him an exhibition at Trinity College, Cambridge in 1812. He was the eldest of seven children having three brothers and three sisters born after him. Two of the brothers died as infants while the third died in 1812. Two of his sisters married; he corresponded with them in his career as a student and then a professor. His mother died in 1807, when Whewell was 13 years old. His father died in 1816, the year Whewell received his bachelor degree at Trinity College, but before his most significant professional accomplishments.
Whewell married, firstly, in 1841, Cordelia Marshall, daughter of John Marshall. Within days of his marriage, Whewell was recommended to be master of Trinity College in Cambridge, following Christopher Wordsworth. Cordelia died in 1855. In 1858 he married again, to Everina Frances, sister of Robert Leslie Ellis and widow of Sir Gilbert Affleck, 5th Baronet. She died in 1865. He had no children.
Career
In 1814 he was awarded the Chancellor's Gold Medal for poetry. He was Second Wrangler in 1816, President of the Cambridge Union Society in 1817, became fellow and tutor of his college.He was professor of mineralogy from 1828 to 1832 and Knightbridge Professor of Philosophy from 1838 to 1855. During the years as professor of philosophy, in 1841, Whewell succeeded Christopher Wordsworth as master.
Whewell influenced the syllabus of the Mathematical Tripos at Cambridge, which undergraduates studied. He was a proponent of 'mixed mathematics': applied mathematics, descriptive geometry and mathematical physics, in contrast with pure mathematics. Under Whewell, analytic topics such as elliptical integrals were replaced by physical studies of electricity, heat and magnetism. He believed an intuitive geometrical understanding of mathematics, based on Euclid and Newton, was most appropriate.
Death and legacy
Whewell died in Cambridge in 1866 as a result of a fall from his horse. He was buried in the chapel of Trinity College, Cambridge, whilst his wives are buried together in the Mill Road Cemetery, Cambridge. A window dedicated to Lady Affleck, his second wife, was installed in her memory in the chancel of All Saints' Church, Cambridge and made by Morris & Co.A list of his writings was prepared after his death by Isaac Todhunter in two volumes, the first being an index of the names of persons with whom Whewell corresponded. Another book was published five years later, as a biography of Whewell's life interspersed with his letters to his father, his sisters, and other correspondence, written and compiled by his niece by marriage, Janet Mary Douglas, called Mrs Stair Douglas on the book's title page. These books are available online in their entirety as part of the Internet Archive.
Endeavours
History and development of science
In 1826 and 1828, Whewell was engaged with George Airy in conducting experiments in Dolcoath mine in Cornwall, in order to determine the density of the earth. Their united labours were unsuccessful, and Whewell did little more in the way of experimental science. He was the author, however, of an Essay on Mineralogical Classification, published in 1828, and carried out extensive work on the tides.When Whewell started his work on tides, there was a theory explaining the forces causing the tides, based on the work of Newton, Bernoulli, and Laplace. But this explained the forces, not how tides actually propagated in oceans bounded by continents. There was a series of tidal observations for a few ports, such as London and Liverpool, which allowed tide tables to be produced for these ports. However the methods used to create such tables, and in some cases the observations, were closely guarded trade secrets. John Lubbock, a former student of Whewell's, had analysed the available historic data for several ports to allow tables to be generated on a theoretical basis, publishing the methodology. This work was supported by Francis Beaufort, Hydrographer of the Navy, and contributed to the publication of the Admiralty Tide Tables starting in 1833.
Whewell built on Lubbock's work to develop an understanding of tidal patterns around the world that could be used to generate predictions for many locations without the need for long series of tidal observations at each port. This required extensive new observations, initially obtained through an informal network, and later through formal projects enabled by Beaufort at the Admiralty. In the first of these, in June 1834, every Coast Guard station in the United Kingdom recorded the tides every fifteen minutes for two weeks. The second, in June 1835, was an international collaboration, involving Admiralty Surveyors, other Royal Navy and British observers, as well as those from the United States, France, Spain, Portugal, Belgium, Denmark, Norway, and the Netherlands. Islands, such as the Channel Islands, were particularly interesting, adding important detail of the progress of the tides through the ocean. The Admiralty also provided the resources for data analysis, and J.F. Dessiou, an expert calculator on the Admiralty staff, was in charge of the calculations.
Whewell made extensive use of graphical methods, and these became not just ways of displaying results, but tools in the analysis of data. He published a number of maps showing cotidal lines – lines joining points where high tide occurred at the same time. These allowed a graphical representation of the progression of tidal waves through the ocean. From this, Whewell predicted that there should be a place where there was no tidal rise or fall in the southern part of the North Sea. Such a "no-tide zone" is now called an amphidromic point. In 1840, the naval surveyor William Hewett confirmed Whewell's prediction. This involved anchoring his ship, HMS Fairy, and taking repeated soundings at the same location with lead and line, precautions being needed to allow for irregularities in the sea bed, and the effects of tidal flow. The data showed a rise of no more than, near the limit of accuracy.
Whewell published about 20 papers over a period of 20 years on his tidal researches. This was his major scientific achievement, and was an important source for his understanding of the process of scientific enquiry, the subject of one of his major works Philosophy of the Inductive Sciences.
His best-known works are two voluminous books that attempt to systematize the development of the sciences, History of the Inductive Sciences and The Philosophy of the Inductive Sciences, Founded Upon Their History. While the History traced how each branch of the sciences had evolved since antiquity, Whewell viewed the Philosophy as the "Moral" of the previous work as it sought to extract a universal theory of knowledge through history.
In the latter, he attempted to follow Francis Bacon's plan for discovery. He examined ideas and by the "colligation of facts" endeavored to unite these ideas with the facts and so construct science. This colligation is an "act of thought", a mental operation consisting of bringing together a number of empirical facts by "superinducing" upon them a conception which unites the facts and renders them capable of being expressed in general laws. Whewell refers to as an example Kepler and the discovery of the elliptical orbit: the orbit's points were colligated by the conception of the ellipse, not by the discovery of new facts. These conceptions are not "innate", but being the fruits of the "progress of scientific thought are unfolded in clearness and distinctness".
Whewell's three steps of induction
Whewell analyzed inductive reasoning into three steps:- The selection of the idea, such as space, number, cause, or likeness ;
- The formation of the conception, or more special modification of those ideas, as a circle, a uniform force, etc.; and,
- The determination of magnitudes.