Probability


Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. This number is often expressed as a percentage, ranging from 0% to 100%. A simple example is the tossing of a fair coin. Since the coin is fair, the two outcomes are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2.
These concepts have been given an axiomatic mathematical formalization in probability theory, which is used widely in areas of study such as statistics, mathematics, science, finance, gambling, artificial intelligence, machine learning, computer science, game theory, and philosophy to, for example, draw inferences about the expected frequency of events. Probability theory is also used to describe the underlying mechanics and regularities of complex systems.

Etymology

The word probability derives from the Latin probabilitas, which can also mean "probity", a measure of the authority of a witness in a legal case in Europe, and often correlated with the witness's nobility. In a sense, this differs much from the modern meaning of probability, which in contrast is a measure of the weight of empirical evidence, and is arrived at from inductive reasoning and statistical inference.

Interpretations

When dealing with random experiments – i.e., experiments that are random and well-defined – in a purely theoretical setting, probabilities can be numerically described by the number of desired outcomes, divided by the total number of all outcomes. This is referred to as theoretical probability. The probability is a number between 0 and 1; the larger the probability, the more likely the desired outcome is to occur. For example, tossing a coin twice will yield "head-head", "head-tail", "tail-head", and "tail-tail" outcomes. The probability of getting an outcome of "head-head" is 1 out of 4 outcomes, or, in numerical terms, 1/4, 0.25 or 25%. The probability of getting an outcome of at least one head is 3 out of 4, or 0.75, and this event is more likely to occur. However, when it comes to practical application, there are two major competing categories of probability interpretations, whose adherents hold different views about the fundamental nature of probability:
  • Objectivists assign numbers to describe some objective or physical state of affairs. The most popular version of objective probability is frequentist probability, which claims that the probability of a random event denotes the relative frequency of occurrence of an experiment's outcome when the experiment is repeated indefinitely. This interpretation considers probability to be the relative frequency "in the long run" of outcomes. A modification of this is propensity probability, which interprets probability as the tendency of some experiment to yield a certain outcome, even if it is performed only once.
  • Subjectivists assign numbers per subjective probability, that is, as a degree of belief. The degree of belief has been interpreted as "the price at which you would buy or sell a bet that pays 1 unit of utility if E, 0 if not E", although that interpretation is not universally agreed upon. The most popular version of subjective probability is Bayesian probability, which includes expert knowledge as well as experimental data to produce probabilities. The expert knowledge is represented by some prior probability distribution. These data are incorporated in a likelihood function. The product of the prior and the likelihood, when normalized, results in a posterior probability distribution that incorporates all the information known to date. By Aumann's agreement theorem, Bayesian agents whose prior beliefs are similar will end up with similar posterior beliefs. However, sufficiently different priors can lead to different conclusions, regardless of how much information the agents share.

    History

The scientific study of probability is a modern development of mathematics. Gambling shows that there has been an interest in quantifying the ideas of probability throughout history, but exact mathematical descriptions arose much later. There are reasons for the slow development of the mathematics of probability. Whereas games of chance provided the impetus for the mathematical study of probability, fundamental issues are still obscured by superstitions.
According to Richard Jeffrey, "Before the middle of the seventeenth century, the term 'probable' meant approvable, and was applied in that sense, univocally, to opinion and to action. A probable action or opinion was one such as sensible people would undertake or hold, in the circumstances." However, in legal contexts especially, 'probable' could also apply to propositions for which there was good evidence.
The sixteenth-century Italian polymath Gerolamo Cardano demonstrated the efficacy of defining odds as the ratio of favourable to unfavourable outcomes.
Aside from the elementary work by Cardano, the doctrine of probabilities dates to the correspondence of Pierre de Fermat and Blaise Pascal. Christiaan Huygens gave the earliest known scientific treatment of the subject. Jakob Bernoulli's Ars Conjectandi and Abraham de Moivre's Doctrine of Chances treated the subject as a branch of mathematics. See Ian Hacking's The Emergence of Probability and James Franklin's The Science of Conjecture for histories of the early development of the very concept of mathematical probability.
The theory of errors may be traced back to Roger Cotes's Opera Miscellanea, but a memoir prepared by Thomas Simpson in 1755 first applied the theory to the discussion of errors of observation. The reprint of this memoir lays down the axioms that positive and negative errors are equally probable, and that certain assignable limits define the range of all errors. Simpson also discusses continuous errors and describes a probability curve.
The first two laws of error that were proposed both originated with Pierre-Simon Laplace. The first law was published in 1774, and stated that the frequency of an error could be expressed as an exponential function of the numerical magnitude of the errordisregarding sign. The second law of error was proposed in 1778 by Laplace, and stated that the frequency of the error is an exponential function of the square of the error. The second law of error is called the normal distribution or the Gauss law. "It is difficult historically to attribute that law to Gauss, who in spite of his well-known precocity had probably not made this discovery before he was two years old."
Daniel Bernoulli introduced the principle of the maximum product of the probabilities of a system of concurrent errors.
Adrien-Marie Legendre developed the method of least squares, and introduced it in his Nouvelles méthodes pour la détermination des orbites des comètes. In ignorance of Legendre's contribution, an Irish-American writer, Robert Adrain, editor of "The Analyst", first deduced the law of facility of error,
where is a constant depending on precision of observation, and is a scale factor ensuring that the area under the curve equals 1. He gave two proofs, the second being essentially the same as John Herschel's. Gauss gave the first proof that seems to have been known in Europe in 1809. Further proofs were given by Laplace, Gauss, James Ivory, Hagen, Friedrich Bessel, W.F. Donkin, and Morgan Crofton. Other contributors were Ellis, De Morgan, Glaisher, and Giovanni Schiaparelli. Peters's formula for r, the probable error of a single observation, is well known.
In the nineteenth century, authors on the general theory included Laplace, Sylvestre Lacroix, Littrow, Adolphe Quetelet, Richard Dedekind, Helmert, Hermann Laurent, Liagre, Didion and Karl Pearson. Augustus De Morgan and George Boole improved the exposition of the theory.
In 1906, Andrey Markov introduced the notion of Markov chains, which played an important role in stochastic processes theory and its applications. The modern theory of probability based on measure theory was developed by Andrey Kolmogorov in 1931.
On the geometric side, contributors to The Educational Times included Miller, Crofton, McColl, Wolstenholme, Watson, and Artemas Martin. See integral geometry for more information.

Theory

Like other theories, the theory of probability is a representation of its concepts in formal termsthat is, in terms that can be considered separately from their meaning. These formal terms are manipulated by the rules of mathematics and logic, and any results are interpreted or translated back into the problem domain.
There have been at least two successful attempts to formalize probability, namely the Kolmogorov formulation and the Cox formulation. In Kolmogorov's formulation, sets are interpreted as events and probability as a measure on a class of sets. In Cox's theorem, probability is taken as a primitive, and the emphasis is on constructing a consistent assignment of probability values to propositions. In both cases, the laws of probability are the same, except for technical details.
There are other methods for quantifying uncertainty, such as the Dempster–Shafer theory or possibility theory, but those are essentially different and not compatible with the usually-understood laws of probability.

Applications

Probability theory is applied in everyday life in risk assessment and modeling. The insurance industry and markets use actuarial science to determine pricing and make trading decisions. Governments apply probabilistic methods in environmental regulation, entitlement analysis, and financial regulation.
An example of the use of probability theory in equity trading is the effect of the perceived probability of any widespread Middle East conflict on oil prices, which have ripple effects in the economy as a whole. An assessment by a commodity trader that a war is more likely can send that commodity's prices up or down, and signals other traders of that opinion. Accordingly, the probabilities are neither assessed independently nor necessarily rationally. The theory of behavioral finance emerged to describe the effect of such groupthink on pricing, on policy, and on peace and conflict.
In addition to financial assessment, probability can be used to analyze trends in biology as well as ecology. As with finance, risk assessment can be used as a statistical tool to calculate the likelihood of undesirable events occurring, and can assist with implementing protocols to avoid encountering such circumstances. Probability is used to design games of chance so that casinos can make a guaranteed profit, yet provide payouts to players that are frequent enough to encourage continued play.
Another significant application of probability theory in everyday life is reliability. Many consumer products, such as automobiles and consumer electronics, use reliability theory in product design to reduce the probability of failure. Failure probability may influence a manufacturer's decisions on a product's warranty.
The cache language model and other statistical language models that are used in natural language processing are also examples of applications of probability theory.