Steel
Steel is an alloy of iron and carbon that demonstrates improved mechanical properties compared to the pure form of iron. Due to its high elastic modulus, yield strength, fracture strength and low raw material cost, steel is one of the most commonly manufactured materials in the world. Steel is used in structures, in bridges, infrastructure, tools, ships, trains, cars, bicycles, machines, electrical appliances, furniture, and weapons.
Iron is always the main element in steel, but other elements are used to produce various grades of steel, demonstrating altered material, mechanical, and microstructural properties. Stainless steels, for example, typically contain 18% chromium and exhibit improved corrosion and oxidation resistance versus their carbon steel counterpart. Galvanized steel is coated in a layer of zinc to achieve a similar effect. Under atmospheric pressures, steels generally take on two crystalline forms: body-centered cubic and face-centered cubic; however, depending on the thermal history and alloying, the microstructure may contain the distorted martensite phase or the carbon-rich cementite phase, which are tetragonal and orthorhombic, respectively. In the case of alloyed iron, the strengthening is primarily due to the introduction of carbon in the primarily-iron lattice, inhibiting deformation under mechanical stress. Alloying may also induce additional phases that affect the mechanical properties. In most cases, the engineered mechanical properties are at the expense of the ductility and elongation of the pure iron state, which decrease upon the addition of carbon.
Steel was produced in bloomery furnaces for thousands of years, but its large-scale, industrial use began only after more efficient production methods were devised in the 17th century, with the introduction of the blast furnace and production of crucible steel. This was followed by the Bessemer process in England in the mid-19th century, and then by the open-hearth furnace. With the invention of the Bessemer process, a new era of mass-produced steel began. Mild steel replaced wrought iron. The German states were the major steel producers in Europe in the 19th century. American steel production was centred in Pittsburgh, Bethlehem, Pennsylvania, and Cleveland, Ohio until the late 20th century. Currently, world steel production is centered in China, which produced 54% of the world's steel in 2023.
Further refinements in the process, such as basic oxygen steelmaking, largely replaced earlier methods by further lowering the cost of production and increasing the quality of the final product. Today, more than 1.6 billion tons of steel are produced annually. Modern steel is generally identified by various grades defined by assorted standards organizations. The modern steel industry is one of the largest manufacturing industries in the world, but also one of the most energy and greenhouse gas emission intense industries, contributing 8% of global emissions. However, steel is also very reusable: it is one of the world's most-recycled materials, with a recycling rate of over 60% globally.
Definitions and related materials
The noun steel originates from the Proto-Germanic adjective stahliją or stakhlijan 'made of steel', which is related to stahlaz or stahliją 'standing firm'.The carbon content of steel is between 0.02% and 2.14% by weight for plain carbon steel. Alloy steel is steel to which other alloying elements have been intentionally added to modify the characteristics of steel. Common alloying elements include: manganese, nickel, chromium, molybdenum, boron, titanium, vanadium, tungsten, cobalt, and niobium. Additional elements, most frequently considered undesirable, are also important in steel: phosphorus, sulphur, silicon, and traces of oxygen, nitrogen, and copper.
Plain iron–carbon alloys with a higher than 2.1% carbon content are known as cast iron. With modern steelmaking techniques such as powder metal forming, it is possible to make very high-carbon steels, but such are not common. Cast iron is not malleable even when hot, but it can be formed by casting as it has a lower melting point than steel and good castability properties. Certain compositions of cast iron, while retaining the economies of melting and casting, can be heat treated after casting to make malleable iron or ductile iron objects. Steel is distinguishable from wrought iron, which may contain a small amount of carbon A but large amounts of slag.
Material properties
Origins and production
Iron is commonly found in the Earth's crust in the form of an ore, usually an iron oxide, such as magnetite or hematite. Iron is extracted from iron ore under reductive conditions, where oxygen reacts with carbon in the fuel to produce carbon monoxide, which then reduces the iron oxide into metallic iron. This process, known as smelting, was first applied to metals with lower melting points, such as tin, which melts at about, and copper, which melts at about, and the combination, bronze, which has a melting point lower than. In comparison, iron melts at about, a temperature not attainable at the start of the Iron Age. Small quantities of iron were smelted in ancient times in a semi-liquid state by repeatedly heating the ore in a charcoal fire and then welding the resulting clumps together with a hammer. The process eliminated much of the impurities, resulting in the production of wrought iron. As furnaces reached higher temperatures due to bellows improvements leading to increased airflow, iron with higher carbon contents were able to be produced. Unlike copper and tin, liquid or solid iron dissolves carbon quite readily.All of these temperatures could be reached with ancient methods used since the Bronze Age. Since the oxidation rate of iron increases rapidly beyond, it is important that smelting takes place in a low-oxygen environment. Smelting, using carbon to reduce iron oxides, results in an alloy that retains too much carbon to be called steel. The excess carbon and other impurities are removed via further processing.
Other materials are often added to the iron/carbon mixture to produce steel with the desired properties. Nickel and manganese in steel add to its tensile strength and make the austenite form of the iron-carbon solution more stable, chromium increases hardness and melting temperature, and vanadium also increases hardness while making it less prone to metal fatigue.
To inhibit corrosion, at least 11% chromium can be added to steel so that a hard oxide forms on the metal surface; this is known as stainless steel. Tungsten slows the formation of cementite, keeping carbon in the iron matrix and allowing martensite to preferentially form at slower quench rates, resulting in high-speed steel. The addition of lead and sulphur decrease grain size, thereby making the steel easier to turn, but also more brittle and prone to corrosion. Such alloys are nevertheless frequently used for components such as nuts, bolts, and washers in applications where toughness and corrosion resistance are not paramount. For the most part, however, p-block elements such as sulphur, nitrogen, phosphorus, and lead are considered contaminants that make steel more brittle and are therefore removed from steel during the melting processing.
Properties
The density of steel varies based on the alloying constituents but usually ranges between, or.Even in a narrow range of concentrations of mixtures of carbon and iron that make steel, several different metallurgical structures, with very different properties can form. Understanding such properties is essential to making quality steel. At room temperature, the most stable form of pure iron is the body-centred cubic structure called alpha iron or α-iron. It is a fairly soft metal that can dissolve only a small concentration of carbon, no more than 0.005% at and 0.021 wt% at. The inclusion of carbon in alpha iron is called ferrite. At 910 °C, pure iron transforms into a face-centred cubic structure, called gamma iron or γ-iron. The inclusion of carbon in gamma iron is called austenite. The more open FCC structure of austenite can dissolve considerably more carbon, as much as 2.1%, at, which reflects the upper carbon content of steel, beyond which is cast iron. When carbon moves out of solution with iron, it forms a very hard, but brittle material called cementite.
When steels with exactly 0.8% carbon, are cooled, the austenitic phase of the mixture attempts to revert to the ferrite phase. The carbon no longer fits within the FCC austenite structure, resulting in an excess of carbon. One way for carbon to leave the austenite is for it to precipitate out of solution as cementite, leaving behind a surrounding phase of BCC iron called ferrite with a small percentage of carbon in solution. The two, cementite and ferrite, precipitate simultaneously producing a layered structure called pearlite, named for its resemblance to mother of pearl. In a hypereutectoid composition, the carbon will first precipitate out as large inclusions of cementite at the austenite grain boundaries until the percentage of carbon in the grains has decreased to the eutectoid composition, at which point the pearlite structure forms. For steels that have less than 0.8% carbon, ferrite will first form within the grains until the remaining composition rises to 0.8% of carbon, at which point the pearlite structure will form. No large inclusions of cementite will form at the boundaries in hypoeutectoid steel. The above assumes that the cooling process is very slow, allowing enough time for the carbon to migrate.
As the rate of cooling is increased the carbon will have less time to migrate to form carbide at the grain boundaries but will have increasingly large amounts of pearlite of a finer and finer structure within the grains; hence the carbide is more widely dispersed and acts to prevent slip of defects within those grains, resulting in hardening of the steel. At the very high cooling rates produced by quenching, the carbon has no time to migrate but is locked within the face-centred austenite and forms martensite. Martensite is a highly strained and stressed, supersaturated form of carbon and iron and is exceedingly hard but brittle. Depending on the carbon content, the martensitic phase takes different forms. Below 0.2% carbon, it takes on a ferrite BCC crystal form, but at higher carbon content it takes a body-centred tetragonal structure. There is no thermal activation energy barrier which prevents transformation from austenite to martensite. There is no compositional change, so the atoms generally retain their same neighbours.
Martensite has a lower density than does austenite, so that the transformation between them results in a change of volume. In this case, expansion occurs. Internal stresses from this expansion generally take the form of compression on the crystals of martensite and tension on the remaining ferrite, with a fair amount of shear on both constituents. If quenching is done improperly, the internal stresses can cause a part to shatter as it cools. At the very least, they cause internal work hardening and other microscopic imperfections. It is common for quench cracks to form when steel is water quenched, although they may not always be visible.