Niobium


Niobium is a chemical element; it has symbol Nb and atomic number 41. It is a light grey, crystalline, and ductile transition metal. Pure niobium has a Mohs hardness rating similar to pure titanium, and it has similar ductility to iron. Niobium oxidizes in Earth's atmosphere very slowly, hence its application in jewelry as a hypoallergenic alternative to nickel. Niobium is often found in the minerals pyrochlore and columbite. Its name comes from Greek mythology: Niobe, daughter of Tantalus, the namesake of tantalum. The name reflects the great similarity between the two elements in their physical and chemical properties, which makes them difficult to distinguish.
English chemist Charles Hatchett reported a new element similar to tantalum in 1801 and named it columbium. In 1809, English chemist William Hyde Wollaston wrongly concluded that tantalum and columbium were identical. German chemist Heinrich Rose determined in 1846 that tantalum ores contain a second element, which he named niobium. In 1864 and 1865, a series of scientific findings clarified that niobium and columbium were the same element, and for a century both names were used interchangeably. Niobium was officially adopted as the name of the element in 1949, but the name columbium remains in current use in metallurgy in the United States.
It was not until the early 20th century that niobium was first used commercially. Niobium is an important addition to high-strength low-alloy steels. Brazil is the leading producer of niobium and ferroniobium, an alloy of 60–70% niobium with iron. Niobium is used mostly in alloys, the largest part in special steel such as that used in gas pipelines. Although these alloys contain a maximum of 0.1%, the small percentage of niobium enhances the strength of the steel by scavenging carbide and nitride. The temperature stability of niobium-containing superalloys is important for its use in jet and rocket engines.
Niobium is used in various superconducting materials. These alloys, also containing titanium and tin, are widely used in the superconducting magnets of MRI scanners. Other applications of niobium include welding, nuclear industries, electronics, optics, and jewelry. In the last application, the low toxicity and iridescence produced by anodization are highly desired properties.

History

Niobium was identified by English chemist Charles Hatchett in 1801. He found a new element in a mineral sample that had been sent to England from Connecticut, United States in 1734 by John Winthrop FRS and named the mineral "columbite"" and the new element "columbium" after Columbia, the poetic name for the United States. The columbium discovered by Hatchett was probably a mixture of the new element with tantalum.
Subsequently, there was considerable confusion over the difference between columbium and the closely related tantalum. In 1809, English chemist William Hyde Wollaston compared the oxides derived from both columbium—columbite, with a density 5.918 g/cm, and tantalum—tantalite, with a density over 8 g/cm, and concluded that the two oxides, despite the significant difference in density, were identical; thus he kept the name tantalum. This conclusion was disputed in 1846 by German chemist Heinrich Rose, who argued that there were two different elements in the tantalite sample, and named them after children of Tantalus: niobium and pelopium. This confusion arose from the minimal observed differences between tantalum and niobium. The claimed new elements pelopium, ilmenium, and dianium were in fact identical to niobium or mixtures of niobium and tantalum.
The differences between tantalum and niobium were unequivocally demonstrated in 1864 by Christian Wilhelm Blomstrand and Henri Étienne Sainte-Claire Deville, as well as Louis J. Troost, who determined the formulas of some of the compounds in 1865 and finally by Swiss chemist Jean Charles Galissard de Marignac in 1866, who all proved that there were only two elements. Articles on ilmenium continued to appear until 1871.
Christian Wilhelm Blomstrand was the first to prepare the metal in 1866, when he reduced niobium chloride by heating it in an atmosphere of hydrogen. Although de Marignac was able to produce tantalum-free niobium on a larger scale by 1866, it was not until the early 20th century that niobium was used in incandescent lamp filaments, the first commercial application. This use quickly became obsolete through the replacement of niobium with tungsten, which has a higher melting point. That niobium improves the strength of steel was first discovered in the 1920s, and this application remains its predominant use. In 1961, the American physicist Eugene Kunzler and coworkers at Bell Labs discovered that niobium–tin continues to exhibit superconductivity in the presence of strong electric currents and magnetic fields, making it the first material to support the high currents and fields necessary for useful high-power magnets and electrical power machinery. This discovery enabled—two decades later—the production of long multi-strand cables wound into coils to create large, powerful electromagnets for rotating machinery, particle accelerators, and particle detectors.

Naming the element

Columbium was the name originally given by Hatchett upon his discovery of the metal in 1801. The name reflected that the type specimen of the ore came from the United States of America. This name remained in use in American journals—the last paper published by American Chemical Society with columbium in its title dates from 1953—while niobium was used in Europe. To end this confusion, the name niobium was chosen for element 41 at the 15th Conference of the Union of Chemistry in Amsterdam in 1949. A year later this name was officially adopted by the International Union of Pure and Applied Chemistry after 100 years of controversy, despite the chronological precedence of the name columbium. This was a compromise of sorts; the IUPAC accepted tungsten instead of wolfram in deference to North American usage; and niobium instead of columbium in deference to European usage. While many US chemical societies and government organizations typically use the official IUPAC name, some metallurgists and metal societies still use the original American name, columbium.

Characteristics

Physical

Niobium is a lustrous, grey, ductile, paramagnetic metal in group 5 of the periodic table, with an electron configuration in the outermost shells atypical for group 5. Similarly atypical configurations occur in the neighborhood of ruthenium and rhodium.
ZElementNo. of electrons/shell
23vanadium2, 8, 11, 2
41niobium2, 8, 18, 12, 1
73tantalum2, 8, 18, 32, 11, 2
105dubnium2, 8, 18, 32, 32, 11, 2

Although it is thought to have a body-centered cubic crystal structure from absolute zero to its melting point, high-resolution measurements of the thermal expansion along the three crystallographic axes reveal anisotropies which are inconsistent with a cubic structure. Therefore, further research and discovery in this area is expected.
Niobium becomes a superconductor at cryogenic temperatures. At atmospheric pressure, it has the highest critical temperature of the elemental superconductors at. Niobium has the greatest magnetic penetration depth of any element. In addition, it is one of the three elemental type II superconductors, along with vanadium and technetium. The superconductive properties are strongly dependent on the purity of the niobium metal.
When very pure, it is comparatively soft and ductile, but impurities make it harder.
The metal has a low neutron capture cross-section for thermal neutrons, so it is used in nuclear industries where neutron-transparent structures are desired.

Chemical

The metal takes on a bluish tinge when exposed to air at room temperature for extended periods. Despite a high melting point in elemental form, it is less dense than other refractory metals. Furthermore, it is corrosion-resistant, exhibits superconductivity properties, and forms dielectric oxide layers.
Niobium is slightly less electropositive and more compact than its predecessor in the periodic table, zirconium, whereas it is virtually identical in size to the heavier tantalum atoms, as a result of the lanthanide contraction. As a result, niobium's chemical properties are very similar to those for tantalum, which appears directly below niobium in the periodic table. Although its corrosion resistance is not as outstanding as that of tantalum, the lower price and greater availability make niobium attractive for less demanding applications, such as vat linings in chemical plants.

Isotopes

Almost all of the niobium in Earth's crust is the one stable isotope,. The most stable radioisotope is with half-life 34.7 million years., along with the next most stable one, , has been detected in refined samples of terrestrial niobium and may originate from bombardment by cosmic ray muons in Earth's crust. Isotopes lighter than the stable tend to β decay, and those that are heavier tend to β decay, with β-delayed proton emission observed for isotopes as heavy as.
The most stable of isomeric state of a niobium isotope is with half-life. The long-lived fission product decays, mainly through this isomer, to stable niobium.

Occurrence

Niobium is estimated to be the 33rd most abundant element in the Earth's crust, at. Some believe that the abundance on Earth is much greater, and that the element's high density has concentrated it in Earth's core. The free element is not found in nature, but niobium occurs in combination with other elements in minerals. Minerals that contain niobium often also contain tantalum. Examples include ferrocolumbite and coltan. Columbite–tantalite minerals and tantalite-) that are most usually found as accessory minerals in pegmatite intrusions, and in alkaline intrusive rocks. Less common are the niobates of calcium, uranium, thorium and the rare earth elements. Examples of such niobates are pyrochlores and euxenite. These large deposits of niobium have been found associated with carbonatites and as a constituent of pyrochlore.
The three largest currently mined deposits of pyrochlore, two in Brazil and one in Canada, were found in the 1950s, and are still the major producers of niobium mineral concentrates. The largest deposit is hosted within a carbonatite intrusion in Araxá, state of Minas Gerais, Brazil, owned by CBMM ; the other active Brazilian deposit is located near Catalão, state of Goiás, and owned by China Molybdenum, also hosted within a carbonatite intrusion. Together, those two mines produce about 88% of the world's supply. Brazil also has a large but still unexploited deposit near São Gabriel da Cachoeira, state of Amazonas, as well as a few smaller deposits, notably in the state of Roraima.
The third largest producer of niobium is the carbonatite-hosted Niobec mine, in Saint-Honoré, Quebec, Canada, owned by Magris Resources. It produces between 7% and 10% of the world's supply.