History of the periodic table


The periodic table is an arrangement of the chemical elements, structured by their atomic number, electron configuration and recurring chemical properties. In the basic form, elements are presented in order of increasing atomic number, in the reading sequence. Then, rows and columns are created by starting new rows and inserting blank cells, so that rows and columns show elements with recurring properties. For example, all elements in group 18 are noble gases that are largely—though not completely—unreactive.
The history of the periodic table reflects over two centuries of growth in the understanding of the chemical and physical properties of the elements, with major contributions made by Antoine-Laurent de Lavoisier, Johann Wolfgang Döbereiner, John Newlands, Julius Lothar Meyer, Dmitri Mendeleev, Glenn T. Seaborg, and others.

Early history

In the 5th century BCE, Leucippus and his pupil Democritus proposed that all matter was composed of small indivisible particles which they called "atoms". Atoms, Democritus believed, are too small to be detected by the senses; they are infinite in numbers and come in infinitely many varieties, and they have existed forever and that these atoms are in constant motion in the void or vacuum. What we perceive as water, fire, plants, or humans are merely combinations of atoms in the void.
Around 330 BCE, the Greek philosopher Aristotle proposed that everything is made up of a mixture of one or more roots, an idea originally suggested by the Sicilian philosopher Empedocles. The four roots, which the Athenian philosopher Plato called elements, were earth, water, air and fire. Similar ideas existed in other ancient traditions, such as Indian philosophy with five elements: Earth, water, fire, air and aether collectively called 'pañca bhūta'.
Of the chemical elements shown on the periodic table, nine – carbon, sulfur, iron, copper, silver, tin, gold, mercury, and lead – have been known since antiquity, as they are found in their native form and are relatively simple to mine with primitive tools. Five more elements were known in the age of alchemy: zinc, arsenic, antimony, and bismuth. Platinum was known to pre-Columbian South Americans, but knowledge of it did not reach Europe until the 16th century.

First classification

The history of the periodic table is also a history of the discovery of the chemical elements.
In 1661, Boyle defined elements as "those primitive and simple Bodies of which the mixt ones are said to be composed, and into which they are ultimately resolved."
The first person in recorded history to discover a new element was Hennig Brand, a bankrupt German merchant. Brand tried to discover the philosopher's stone—a mythical object that was supposed to turn inexpensive base metals into gold. In 1669, or later, his experiments with distilled human urine resulted in the production of a glowing white substance, which he called "cold fire". He kept his discovery secret until 1680, when Anglo-Irish chemist Robert Boyle rediscovered phosphorus and published his findings.
The discovery of phosphorus helped to raise the question of what it meant for a substance to be an element, in a world where versions of atomic theory were only speculative and later understandings of the nature of substances were only beginning to become possible.
In 1718, Étienne François Geoffroy's Affinity Table made use of several aspects — tabular grouping and correlation with chemical affinity — that would later be reprised.
File:Affinity-table.jpg|300px|right|thumb|Geoffroy's 1718 Affinity Table: at the head of each column is a chemical species with which all the species below can combine. Some historians have defined this table as being the start of the chemical revolution.
In 1789, French chemist Antoine Lavoisier wrote Traité Élémentaire de Chimie, which is considered to be the first modern textbook about chemistry. Lavoisier defined an element as a substance whose smallest units cannot be broken down into a simpler substance. Lavoisier's book contained a list of "simple substances" that Lavoisier believed could not be broken down further, which included oxygen, nitrogen, hydrogen, phosphorus, mercury, zinc and sulfur, which formed the basis for the modern list of elements. Lavoisier's list also included "light" and "caloric", which at the time were believed to be material substances. He classified these substances into metals and nonmetals. While many leading chemists refused to believe Lavoisier's new revelations, the Elementary Treatise was written well enough to convince the younger generation. However, Lavoisier's descriptions of his elements lack completeness, as he only classified them as metals and non-metals.
In 1808–10, British natural philosopher John Dalton published a method by which to arrive at provisional atomic weights for the elements known in his day, from stoichiometric measurements and reasonable inferences. Dalton's atomic theory was adopted by many chemists during the 1810s and 1820s.
In 1815, British physician and chemist William Prout noticed that atomic weights seemed to be multiples of that of hydrogen.
In 1817, German physicist Johann Wolfgang Döbereiner began to formulate one of the earliest attempts to classify the elements. In 1829, he found that he could form some of the elements into groups of three, with the members of each group having related properties. He termed these groups triads. In 1843, building on work done by Döbereiner, Leopold Gmelin developed a forerunner of the modern periodic table that listed 55 chemical elements grouped by common characteristics.
Definition of Triad law
"Chemically analogous elements arranged in increasing order of their atomic weights formed well marked groups of three called Triads in which the atomic weight of the middle element was found to be generally the arithmetic mean of the atomic weight of the other two elements in the triad.
  1. chlorine, bromine, and iodine
  2. calcium, strontium, and barium
  3. sulfur, selenium, and tellurium
  4. lithium, sodium, and potassium
All those attempts to sort elements by atomic weights were inhibited by the inaccurate determination of weights, and not just slightly: carbon, oxygen and many other elements were believed to be half their actual masses, because only monatomic gases were believed to exist. Even though Amedeo Avogadro and, independently of him, André-Marie Ampère, proposed the solution in the form of diatomic molecules and Avogadro's law already in the 1810s, it was not until after Stanislao Cannizzaro's publications in late 1850s when the theory began to be widely considered.
In 1860, the modern scientific consensus emerged at the first international chemical conference, the Karlsruhe Congress, and a revised list of elements and atomic masses was adopted. It helped spur creation of more extensive systems. The first such system emerged in two years.

Comprehensive formalizations

French geologist Alexandre-Émile Béguyer de Chancourtois noticed that the elements, when ordered by their atomic weights, displayed similar properties at regular intervals. In 1862, he devised a three-dimensional chart, named the "telluric helix", after the element tellurium, which fell near the center of his diagram. With the elements arranged in a spiral on a cylinder by order of increasing atomic weight, de Chancourtois saw that elements with similar properties lined up vertically. The original paper from Chancourtois in Comptes rendus de l'Académie des Sciences did not include a chart and used geological rather than chemical terms. In 1863, he extended his work by including a chart and adding ions and compounds.
The next attempt was made in 1864. British chemist John Newlands presented in Chemical News a classification of the 62 known elements. Newlands noticed recurring trends in physical properties of the elements at recurring intervals of multiples of eight in order of mass number; based on this observation, he produced a classification of these elements into eight groups. Each group displayed a similar progression; Newlands likened these progressions to the progression of notes within a musical scale. Newlands's table left no gaps for possible future elements, and in some cases had two elements at the same position in the same octave. Newlands's table was ignored or ridiculed by some of his contemporaries. The Chemical Society refused to publish his work. The president of the Society, William Odling, defended the Society's decision by saying that such "theoretical" topics might be controversial; there was even harsher opposition from within the Society, suggesting the elements could have been just as well listed alphabetically. Later that year, Odling suggested a table of his own but failed to get recognition following his role in opposing Newlands's table.
German chemist Lothar Meyer also noted the sequences of similar chemical and physical properties repeated at periodic intervals. According to him, if the atomic weights were plotted as ordinates and the atomic volumes as abscissas —the curve obtained is a series of maximums and minimums—the most electropositive elements would appear at the peaks of the curve in the order of their atomic weights. In 1864, a book of his was published; it contained an early version of the periodic table containing 28 elements, and classified elements into six families by their valence—for the first time, elements had been grouped according to their valence. Works on organizing the elements by atomic weight had until then been stymied by inaccurate measurements of the atomic weights. In 1868, he revised his table, but this revision was published as a draft only after his death. In a paper dated December 1869 which appeared early in 1870, Meyer published a new periodic table of 55 elements, in which the series of periods are ended by an element of the alkaline earth metal group. The paper also included a line chart of relative atomic volumes, which illustrated periodic relationships of physical characteristics of the elements, and which assisted Meyer in deciding where elements should appear in his periodic table. By this time he had already seen the publication of Mendeleev's first periodic table, but his work appears to have been largely independent.
In 1869, Russian chemist Dmitri Mendeleev arranged 63 elements by increasing atomic weight in several columns, noting recurring chemical properties across them. It is sometimes said that he played "chemical solitaire" on long train journeys, using cards containing the symbols, atomic weights, and chemical properties of the known elements. Another possibility is that he was inspired in part by the periodicity of the Sanskrit alphabet, which was pointed out to him by his friend and linguist Otto von Böhtlingk. Mendeleev used the trends he saw to suggest that atomic weights of some elements were incorrect, and accordingly changed their placements: for instance, he figured there was no place for a trivalent beryllium with the atomic weight of 14 in his work, and he cut both the atomic weight and valency of beryllium by a third, suggesting it was a divalent element with the atomic weight of 9.4. Mendeleev widely distributed printed broadsheets of the table to various chemists in Russia and abroad. Mendeleev argued in 1869 there were seven types of highest oxides. Mendeleev continued to improve his ordering; in 1870, it gained a tabular shape, and each column was given its own highest oxide, and in 1871, he further developed it and formulated what he termed the "law of periodicity". Some changes also occurred with new revisions, with some elements changing positions.