Barium


Barium is a chemical element; it has symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element.
The most common minerals of barium are barite and witherite. The name barium originates from the alchemical derivative "baryta" from Greek βαρὺς, meaning 'heavy'. Baric is the adjectival form of barium. Barium was identified as a new element in 1772, but not reduced to a metal until 1808 with the advent of electrolysis.
Barium has few industrial applications. Historically, it was used as a getter for vacuum tubes and in oxide form as the emissive coating on indirectly heated cathodes. It is a component of YBCO and electroceramics, and is added to steel and cast iron to reduce the size of carbon grains within the microstructure. Barium compounds are added to fireworks to impart a green color. Barium sulfate is used as an insoluble additive to oil well drilling fluid. In a purer form it is used as X-ray radiocontrast agents for imaging the human gastrointestinal tract. Water-soluble barium compounds are poisonous and have been used as rodenticides.

Characteristics

Physical properties

Barium is a soft, silvery-white metal, with a slight golden shade when ultrapure. The silvery-white color of barium metal rapidly vanishes upon oxidation in air yielding a dark gray layer containing the oxide. Barium has a medium specific weight and high electrical conductivity. Because barium is difficult to purify, many of its properties have not been accurately determined.
At room temperature and pressure, barium metal adopts a body-centered cubic structure, with a barium–barium distance of 503 picometers, expanding with heating at a rate of approximately 1.8/°C. It is a soft metal with a Mohs hardness of 1.25. Its melting temperature of is intermediate between those of the lighter strontium and heavier radium ; however, its boiling point of exceeds that of strontium. The density is again intermediate between those of strontium and radium.

Chemical reactivity

Barium is chemically similar to magnesium, calcium, and strontium, but more reactive. Its compounds are almost invariably found in the +2 oxidation state. As expected for a highly electropositive metal, barium's reaction with chalcogens is highly exothermic. Barium reacts with atmospheric oxygen in air at room temperature. For this reason, metallic barium is often stored under oil or in an inert atmosphere. Reactions with other nonmetals, such as carbon, nitrogen, phosphorus, silicon, and hydrogen, proceed upon heating. Reactions with water and alcohols are also exothermic and release hydrogen gas:
Barium reacts with ammonia to form the electride, which near room temperature gives the amide.
The metal is readily attacked by acids. Sulfuric acid is a notable exception because passivation stops the reaction by forming the insoluble barium sulfate on the surface. Barium combines with several other metals, including aluminium, zinc, lead, and tin, forming intermetallic phases and alloys.

Compounds

Barium salts are typically white when solid and colorless when dissolved. They are denser than the strontium or calcium analogs.
Barium hydroxide was known to alchemists, who produced it by heating barium carbonate. Unlike calcium hydroxide, it absorbs very little CO2 in aqueous solutions and is therefore insensitive to atmospheric fluctuations. This property is used in calibrating pH equipment.
Barium compounds burn with a green to pale green flame, which is an efficient test to detect a barium compound. The color results from spectral lines at 455.4, 493.4, 553.6, and 611.1 nm.
Organobarium compounds are a growing field of knowledge: recently discovered are dialkylbariums and alkylhalobariums.

Isotopes

Barium found in the Earth's crust is a mixture of seven primordial nuclides, barium-130, 132, and 134 through 138. Barium-130 undergoes very slow radioactive decay to xenon-130 by double beta plus decay, with a half-life of ×1021 years. Its abundance is about 0.11% that of natural barium. Though barium-132 can theoretically undergo the same decay, giving xenon-132, experimental evidence has not detected this.
Of the stable isotopes, barium-138 composes 71.7% of all barium; other isotopes have decreasing abundance with decreasing mass number.
In total, barium has 41 known isotopes, ranging in mass between 114 and 154. The most stable artificial radioisotope is barium-133 with a half-life of 10.538 years. Five other isotopes have half-lives longer than a day. The longest-lived isomers are 133mBa at 38.90 hours and 135m1Ba at 28.11 hours. The analogous 137m1Ba occurs in the decay of the common fission product caesium-137.

History

Alchemists in the early Middle Ages knew about some barium minerals. Smooth pebble-like stones of mineral baryte were found in volcanic rock near Bologna, Italy, and so were called "Bologna stones". Alchemists were attracted to them because after exposure to light they would glow for years. The phosphorescent properties of baryte heated with organics were described by V. Casciorolus in 1602.
Carl Scheele determined that baryte contained a new element in 1772, but could not isolate barium, only barium oxide. Johan Gottlieb Gahn also isolated barium oxide two years later in similar studies. Oxidized barium was at first called "barote" by Guyton de Morveau, a name that was changed by Antoine Lavoisier to baryte or baryta. Also in the 18th century, English mineralogist William Withering noted a heavy mineral in the lead mines of Cumberland, now known to be witherite. Barium was first isolated by electrolysis of molten barium salts in 1808 by Sir Humphry Davy in England. Davy, by analogy with calcium, named "barium" after baryta, with the "-ium" ending signifying a metallic element. Robert Bunsen and Augustus Matthiessen obtained pure barium by electrolysis of a molten mixture of barium chloride and ammonium chloride.
The production of pure oxygen in the Brin process was a large-scale application of barium peroxide in the 1880s, before it was replaced by electrolysis and fractional distillation of liquefied air in the early 1900s. In this process barium oxide reacts at with air to form barium peroxide, which decomposes above by releasing oxygen:
Barium sulfate was first applied as a radiocontrast agent in X-ray imaging of the digestive system in 1908.

Occurrence and production

The abundance of barium is 0.0425% in the Earth's crust and 13 μg/L in sea water. The primary commercial source of barium is baryte, a barium sulfate mineral. with deposits in many parts of the world. Another commercial source, far less important than baryte, is witherite, barium carbonate. The main deposits are located in Britain, Romania, and the former USSR.
The baryte reserves are estimated between 0.7 and 2 billion tonnes. The highest production, 8.3 million tonnes, was achieved in 1981, but only 7–8% was used for barium metal or compounds. Baryte production has risen since the second half of the 1990s from 5.6 million tonnes in 1996 to 7.6 in 2005 and 7.8 in 2011. China accounts for more than 50% of this output, followed by India, Morocco, US, Iran and Kazakhstan and Turkey.
The mined ore is washed, crushed, classified, and separated from quartz. If the quartz penetrates too deeply into the ore, or the iron, zinc, or lead content is abnormally high, then froth flotation is used. The product is a 98% pure baryte ; the purity should be no less than 95%, with a minimal content of iron and silicon dioxide. It is then reduced by carbon to barium sulfide:
The water-soluble barium sulfide is the starting point for other compounds: treating BaS with oxygen produces the sulfate, with nitric acid the nitrate, with aqueous carbon dioxide the carbonate, and so on. The nitrate can be thermally decomposed to yield the oxide. Barium metal is produced by reduction with aluminium at. The intermetallic compound BaAl4 is produced first:
The remaining barium oxide reacts with the aluminium oxide formed...
...and the overall reaction is:
Note that not all barium is reduced.
Barium vapor is condensed and packed into molds in an atmosphere of argon. This method is used commercially, yielding ultrapure barium. Commonly sold barium is about 99% pure, with main impurities being strontium and calcium and other contaminants contributing less than 0.1%.
A similar reaction with silicon at yields barium and barium metasilicate. Electrolysis is not used because barium readily dissolves in molten halides and the product is rather impure.
File:Benitoite HD.jpg|thumb|Benitoite crystals on natrolite. The mineral is named for the San Benito River in San Benito County where it was first found.

Gemstone

The barium mineral, benitoite, occurs as a very rare blue fluorescent gemstone, and is the official state gem of California.

Barium in seawater

Barium exists in seawater as the Ba2+ ion with an average oceanic concentration of 109 nmol/kg. Barium also exists in the ocean as BaSO4, or barite. Barium has a nutrient-like profile with a residence time of 10,000 years.
Barium shows a relatively consistent concentration in upper ocean seawater, excepting regions of high river inputs and regions with strong upwelling. There is little depletion of barium concentrations in the upper ocean for an ion with a nutrient-like profile, thus lateral mixing is important. Barium isotopic values show basin-scale balances instead of local or short-term processes.

Applications

Metal and alloys

Barium, as a metal or when alloyed with aluminium, is used to remove unwanted gases from vacuum tubes, such as TV picture tubes. Barium is suitable for this purpose because of its low vapor pressure and reactivity towards oxygen, nitrogen, carbon dioxide, and water; it can even partly remove noble gases by dissolving them in the crystal lattice. This application has gradually disappeared due to the popularity of the tubeless LCD, LED, and plasma sets.
Other uses of elemental barium are minor and include an additive to silumin that refines their structure, as well as
  • bearing alloys;
  • lead–tin soldering alloys – to increase the creep resistance;
  • alloy with nickel for spark plugs;
  • additive to steel and cast iron as an inoculant;
  • alloys with calcium, manganese, silicon, and aluminium as high-grade steel deoxidizers.