Bohr model


In atomic physics, the Bohr model or Rutherford–Bohr model is an obsolete model of the atom that incorporated some early quantum concepts. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford's discovery of the atom's nucleus, it supplanted the plum pudding model of J. J. Thomson only to be replaced by the quantum atomic model in the 1920s. It consists of a small, dense atomic nucleus surrounded by orbiting electrons. It is analogous to the structure of the Solar System, but with attraction provided by electrostatic force rather than gravity, and with the electron energies quantized.
In the history of atomic physics, it followed, and ultimately replaced, several earlier models, including Joseph Larmor's Solar System model, Jean Perrin's model, the cubical model, Hantaro Nagaoka's Saturnian model, the plum pudding model, Arthur Haas's quantum model, the Rutherford model, and John William Nicholson's nuclear quantum model. The improvement over the 1911 Rutherford model mainly concerned the new quantum mechanical interpretation introduced by Haas and Nicholson, but forsaking any attempt to explain radiation according to classical physics.
The model's key success lies in explaining the Rydberg formula for hydrogen's spectral emission lines. While the Rydberg formula had been known experimentally, it did not gain a theoretical basis until the Bohr model was introduced. Not only did the Bohr model explain the reasons for the structure of the Rydberg formula, it also provided a justification for the fundamental physical constants that make up the formula's empirical results.
The Bohr model is a relatively primitive model of the hydrogen atom, compared to the valence shell model. As a theory, it can be derived as a first-order approximation of the hydrogen atom using the broader and much more accurate quantum mechanics and thus may be considered to be an obsolete scientific theory. However, because of its simplicity, and its correct results for selected systems, the Bohr model is still commonly taught to introduce students to quantum mechanics or energy level diagrams before moving on to the more accurate, but more complex, valence shell atom. A related quantum model was proposed by Arthur Erich Haas in 1910 but was rejected until the 1911 Solvay Congress where it was thoroughly discussed. The quantum theory of the period between Planck's discovery of the quantum and the advent of a mature quantum mechanics is often referred to as the old quantum theory.

Background

Until the second decade of the 20th century, atomic models were generally speculative. Even the concept of atoms, let alone atoms with internal structure, faced opposition from some scientists.

Planetary models

In the late 1800s speculations on the possible structure of the atom included planetary models with orbiting charged electrons.
These models faced a significant constraint.
In 1897, Joseph Larmor showed that an accelerating charge would radiate power according to classical electrodynamics, a result known as the Larmor formula. Since electrons forced to remain in orbit are continuously accelerating, they would be mechanically unstable. Larmor noted that electromagnetic effect of multiple electrons, suitably arranged, would cancel each other. Thus subsequent atomic models based on classical electrodynamics needed to adopt such special multi-electron arrangements.

Thomson's atom model

When Bohr began his work on a new atomic theory in the summer of 1912 the atomic model proposed by J. J. Thomson, now known as the plum pudding model, was the best available. Thomson proposed a model with electrons rotating in coplanar rings within an atomic-sized, positively-charged, spherical volume. Thomson showed that this model was mechanically stable by lengthy calculations and was electrodynamically stable under his original assumption of thousands of electrons per atom. Moreover, he suggested that the particularly stable configurations of electrons in rings was connected to chemical properties of the atoms. He developed a formula for the scattering of beta particles that seemed to match experimental results.
However Thomson himself later showed that the atom had a factor of a thousand fewer electrons, challenging the stability argument and forcing the poorly understood positive sphere to have most of the atom's mass. Thomson was also unable to explain the many lines in atomic spectra.

Rutherford nuclear model

In 1908, Hans Geiger and Ernest Marsden demonstrated that alpha particles occasionally scatter at large angles, a result inconsistent with Thomson's model.
In 1911 Ernest Rutherford developed a new scattering model, showing that the observed large angle scattering could be explained by a compact, highly charged mass at the center of the atom.
Rutherford scattering did not involve the electrons and thus his model of the atom was incomplete.
Bohr begins his first paper on his atomic model by describing Rutherford's atom as consisting of a small, dense, positively charged nucleus attracting negatively charged electrons.

Atomic spectra

By the early twentieth century, it was expected that a successful model of the atom should account for the many atomic spectral lines. These lines were summarized in empirical formulas by Johann Balmer and Johannes Rydberg. In 1897, Lord Rayleigh showed that vibrations of electrical systems predicted spectral lines that depend on the square of the vibrational frequency, contradicting the empirical formula which depended directly on the frequency.
In 1907 Arthur W. Conway showed that, rather than the entire atom vibrating, vibrations of only one of the electrons in the system described by Thomson might be sufficient to account for spectral series. Although Bohr's model would also rely on just the electron to explain the spectrum, he did not assume an electrodynamical model for the atom.
The other important advance in the understanding of atomic spectra was the Rydberg–Ritz combination principle which related atomic spectral line frequencies to differences between 'terms', special frequencies characteristic of each element. Bohr would recognize the terms as energy levels of the atom divided by the Planck constant, leading to the modern view that the spectral lines result from energy differences.

Haas atomic model

In 1910, Arthur Erich Haas proposed a model of the hydrogen atom with an electron circulating on the surface of a sphere of positive charge. The model resembled Thomson's plum pudding model, but Haas added a radical new twist: he constrained the electron's potential energy,, on a sphere of radius to equal the frequency,, of the electron's orbit on the sphere times the Planck constant:
where represents the charge on the electron and the sphere. Haas combined this constraint with the balance-of-forces equation. The attractive force between the electron and the sphere balances the centrifugal force:
where is the mass of the electron. This combination relates the radius of the sphere to the Planck constant:
Haas solved for the Planck constant using the then-current value for the radius of the hydrogen atom.
Three years later, Bohr would use similar equations with different interpretation. Bohr took the Planck constant as a given value and used the equations to predict, the radius of the electron orbiting in the ground state of the hydrogen atom. This value is now called the Bohr radius.

Influence of the Solvay Conference

The first Solvay Conference, in 1911, was one of the first international physics conferences. Nine Nobel or future Nobel laureates attended, including
Ernest Rutherford, Bohr's mentor.
Bohr did not attend but he read the Solvay reports and discussed them with Rutherford.
The subject of the conference was the theory of radiation and the energy quanta of Max Planck's oscillators.
Planck's lecture at the conference ended with comments about atoms and the discussion that followed it concerned atomic models. Hendrik Lorentz raised the question of the composition of the atom based on [|Haas's model], a form of Thomson's plum pudding model with a quantum modification. Lorentz explained that the size of atoms could be taken to determine the Planck constant as Haas had done or the Planck constant could be taken as determining the size of atoms. Bohr would adopt the second path.
The discussions outlined the need for the quantum theory to be included in the atom. Planck explicitly mentions the failings of classical mechanics. While Bohr had already expressed a similar opinion in his PhD thesis, at Solvay the leading scientists of the day discussed a break with classical theories. Bohr's first paper on his atomic model cites the Solvay proceedings saying: "Whatever the alteration in the laws of motion of the electrons may be, it seems necessary to introduce in the laws in question a quantity foreign to the classical electrodynamics, i.e. Planck's constant, or as it often is called the elementary quantum of action." Encouraged by the Solvay discussions, Bohr would assume the atom was stable and abandon the efforts to stabilize classical models of the atom

Nicholson atom theory

In 1911 John William Nicholson published a model of the atom which would influence Bohr's model. Nicholson developed his model based on the analysis of astrophysical spectroscopy. He connected the observed spectral line frequencies with the orbits of electrons in his atoms. The connection he adopted associated the atomic electron orbital angular momentum with the Planck constant.
Whereas Planck focused on a quantum of energy, Nicholson's angular momentum quantum relates to orbital frequency.
This new concept gave Planck constant an atomic meaning for the first time. In his 1913 paper Bohr cites Nicholson as finding quantized angular momentum important for the atom.
The other critical influence of Nicholson work was his detailed analysis of spectra. Before Nicholson's work Bohr thought the spectral data was not useful for understanding atoms. In comparing his work to Nicholson's, Bohr came to understand the spectral data and their value. When he then learned from a friend about Balmer's compact formula for the spectral line data, Bohr quickly realized his model would match it in detail.
Nicholson's model was based on classical electrodynamics along the lines of J.J. Thomson's plum pudding model but his negative electrons orbiting a positive nucleus rather than circulating in a sphere. To avoid immediate collapse of this system he required that electrons come in pairs so the rotational acceleration of each electron was matched across the orbit. By 1913 Bohr had already shown, from the analysis of alpha particle energy loss, that hydrogen had only a single electron not a matched pair. Bohr's atomic model would abandon classical electrodynamics.
Nicholson's model of radiation was quantum but was attached to the orbits of the electrons. Bohr quantization would associate it with differences in energy levels of his model of hydrogen rather than the orbital frequency.