Tennessine


Tennessine is a synthetic element; it has symbol Ts and atomic number 117. It has the second-highest atomic number, the joint-highest atomic mass of all known elements, and is the penultimate element of the 7th period of the periodic table. It is named after the U.S. state of Tennessee, where key research institutions involved in its discovery are located.
The discovery of tennessine was officially announced in Dubna, Russia, by a Russian–American collaboration in April 2010, which makes it the most recently discovered element. One of its daughter isotopes was created directly in 2011, partially confirming the experiment's results. The experiment was successfully repeated by the same collaboration in 2012 and by a joint German–American team in May 2014. In December 2015, the Joint Working Party of the International Union of Pure and Applied Chemistry and the International Union of Pure and Applied Physics, which evaluates claims of discovery of new elements, recognized the element and assigned the priority to the Russian–American team. In June 2016, the IUPAC published a declaration stating that the discoverers had suggested the name tennessine, a name which was officially adopted in November 2016.
Tennessine may be located in the "island of stability", a concept that explains why some superheavy elements are more stable despite an overall trend of decreasing stability for elements beyond bismuth on the periodic table. The synthesized tennessine atoms have lasted tens and hundreds of milliseconds. In the periodic table, tennessine is expected to be a member of group 17, the halogens. Some of its properties may differ significantly from those of the lighter halogens due to relativistic effects. As a result, tennessine is expected to be a volatile metal that neither forms anions nor achieves high oxidation states. A few key properties, such as its melting and boiling points and its first ionization energy, are nevertheless expected to follow the periodic trends of the halogens.

Introduction

History

Pre-discovery

In December 2004, the Joint Institute for Nuclear Research team in Dubna, Moscow Oblast, Russia, proposed a joint experiment with the Oak Ridge National Laboratory in Oak Ridge, Tennessee, United States, to synthesize element 117 — so called for the 117 protons in its nucleus. Their proposal involved fusing a berkelium target and a calcium beam, conducted via bombardment of the berkelium target with calcium nuclei: this would complete a set of experiments done at the JINR on the fusion of actinide targets with a calcium-48 beam, which had thus far produced the new elements 113–116 and 118. ORNL—then the world's only producer of berkelium—could not then provide the element, as they had temporarily ceased production, and re-initiating it would be too costly. Plans to synthesize element 117 were suspended in favor of the confirmation of element 118, which had been produced earlier in 2002 by bombarding a californium target with calcium. The required berkelium-249 is a by-product in californium-252 production, and obtaining the required amount of berkelium was an even more difficult task than obtaining that of californium, as well as costly: It would cost around 3.5 million dollars, and the parties agreed to wait for a commercial order of californium production, from which berkelium could be extracted.
The JINR team sought to use berkelium because calcium-48, the isotope of calcium used in the beam, has 20 protons and 28 neutrons, making a neutron–proton ratio of 1.4; and it is the lightest stable or near-stable nucleus with such a large neutron excess. Thanks to the neutron excess, the resulting nuclei were expected to be heavier and closer to the sought-after island of stability. Of the aimed for 117 protons, calcium has 20, and thus they needed to use berkelium, which has 97 protons in its nucleus.
In February 2005, the leader of the JINR team — Yuri Oganessian — presented a colloquium at ORNL. Also in attendance were representatives of Lawrence Livermore National Laboratory, who had previously worked with JINR on the discovery of elements 113–116 and 118, and Joseph Hamilton of Vanderbilt University, a collaborator of Oganessian.
Hamilton checked if the ORNL high-flux reactor produced californium for a commercial order: The required berkelium could be obtained as a by-product. He learned that it did not and there was no expectation for such an order in the immediate future. Hamilton kept monitoring the situation, making the checks once in a while.

Discovery

ORNL resumed californium production in spring 2008. Hamilton noted the restart during the summer and made a deal on subsequent extraction of berkelium. During a September 2008 symposium at Vanderbilt University in Nashville, Tennessee, celebrating his 50th year on the Physics faculty, Hamilton introduced Oganessian to James Roberto. They established a collaboration among JINR, ORNL, and Vanderbilt. Clarice Phelps was part of ORNL's team that collaborated with JINR; this is particularly notable as because of it the IUPAC recognizes her as the first African-American woman to be involved with the discovery of a chemical element. The eventual collaborating institutions also included The University of Tennessee, Lawrence Livermore National Laboratory, The Research Institute for Advanced Reactors, and The University of Nevada.
In November 2008, the U.S. Department of Energy, which had oversight over the reactor in Oak Ridge, allowed the scientific use of the extracted berkelium.
The production lasted 250 days and ended in late December 2008, resulting in 22 milligrams of berkelium, enough to perform the experiment. In January 2009, the berkelium was removed from ORNL's High Flux Isotope Reactor; it was subsequently cooled for 90 days and then processed at ORNL's Radiochemical Engineering and Development Center to separate and purify the berkelium material, which took another 90 days. Its half-life is only 330 days: this means, after that time, half the berkelium produced would have decayed. Because of this, the berkelium target had to be quickly transported to Russia; for the experiment to be viable, it had to be completed within six months of its departure from the United States. The target was packed into five lead containers to be flown from New York to Moscow.
Russian customs officials twice refused to let the target enter the country because of missing or incomplete paperwork. Over the span of a few days, the target traveled over the Atlantic Ocean five times. On its arrival in Russia in June 2009, the berkelium was immediately transferred to Research Institute of Atomic Reactors in Dimitrovgrad, Ulyanovsk Oblast, where it was deposited as a 300-nanometer-thin layer on a titanium film. In July 2009, it was transported to Dubna, where it was installed in the particle accelerator at the JINR. The calcium-48 beam was generated by chemically extracting the small quantities of calcium-48 present in naturally occurring calcium, enriching it 500 times. This work was done in the closed town of Lesnoy, Sverdlovsk Oblast, Russia.
The experiment began in late July 2009. In January 2010, scientists at the Flerov Laboratory of Nuclear Reactions announced internally that they had detected the decay of a new element with atomic number 117 via two decay chains: one of an odd–odd isotope undergoing 6 alpha decays before spontaneous fission, and one of an odd–even isotope undergoing 3 alpha decays before fission. The obtained data from the experiment was sent to the LLNL for further analysis. On 9 April 2010, an official report was released in the journal Physical Review Letters identifying the isotopes as 294117 and 293117, which were shown to have half-lives on the order of tens or hundreds of milliseconds. The work was signed by all parties involved in the experiment to some extent: JINR, ORNL, LLNL, RIAR, Vanderbilt, the University of Tennessee, and the University of Nevada, which provided data analysis support. The isotopes were formed as follows:

Confirmation

All daughter isotopes of element 117 were previously unknown; therefore, their properties could not be used to confirm the claim of discovery. In 2011, when one of the decay products was synthesized directly, its properties matched those measured in the claimed indirect synthesis from the decay of element 117. The discoverers did not submit a claim for their findings in 2007–2011 when the Joint Working Party was reviewing claims of discoveries of new elements.
The Dubna team repeated the experiment in 2012, creating seven atoms of element 117 and confirming their earlier synthesis of element 118. The results of the experiment matched the previous outcome. In May 2014, a joint German–American collaboration of scientists from the ORNL and the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Hessen, Germany, claimed to have confirmed discovery of the element. The team repeated the Dubna experiment using the Darmstadt accelerator, creating two atoms of element 117.
In December 2015, the JWP officially recognized the discovery of 293117 on account of the confirmation of the properties of its daughter 115, and thus the listed discoverers — JINR, LLNL, and ORNL — were given the right to suggest an official name for the element.
In May 2016, Lund University and GSI cast some doubt on the syntheses of elements 115 and 117. The decay chains assigned to 115, the isotope instrumental in the confirmation of the syntheses of elements 115 and 117, were found based on a new statistical method to be too different to belong to the same nuclide with a reasonably high probability. The reported 293117 decay chains approved as such by the JWP were found to require splitting into individual data sets assigned to different isotopes of element 117. It was also found that the claimed link between the decay chains reported as from 117 and 115 probably did not exist. The multiplicity of states found when nuclides that are not even–even undergo alpha decay is not unexpected and contributes to the lack of clarity in the cross-reactions. This study criticized the JWP report for overlooking subtleties associated with this issue, and considered it "problematic" that the only argument for the acceptance of the discoveries of elements 115 and 117 was a link they considered to be doubtful.
On 8 June 2017, two members of the Dubna team published a journal article answering these criticisms, analysing their data on the nuclides 117 and 115 with widely accepted statistical methods, noted that the 2016 studies indicating non-congruence produced problematic results when applied to radioactive decay: they excluded from the 90% confidence interval both average and extreme decay times, and the decay chains that would be excluded from the 90% confidence interval they chose were more probable to be observed than those that would be included. The 2017 reanalysis concluded that the observed decay chains of 117 and 115 were consistent with the assumption that only one nuclide was present at each step of the chain, although it would be desirable to be able to directly measure the mass number of the originating nucleus of each chain as well as the excitation function of the reaction.