History of radiation protection
The history of radiation protection begins at the turn of the 19th and 20th centuries with the realization that ionizing radiation from natural and artificial sources can have harmful effects on living organisms. As a result, the study of radiation damage also became a part of this history.
While radioactive materials and X-rays were once handled carelessly, increasing awareness of the dangers of radiation in the 20th century led to the implementation of various preventive measures worldwide, resulting in the establishment of radiation protection regulations. Although radiologists were the first victims, they also played a crucial role in advancing radiological progress and their sacrifices will always be remembered. Radiation damage caused many people to suffer amputations or die of cancer. The use of radioactive substances in everyday life was once fashionable, but over time, the health effects became known. Investigations into the causes of these effects have led to increased awareness of protective measures. The dropping of atomic bombs during World War II brought about a drastic change in attitudes towards radiation. The effects of natural cosmic radiation, radioactive substances such as radon and radium found in the environment, and the potential health hazards of non-ionizing radiation are well-recognized. Protective measures have been developed and implemented worldwide, monitoring devices have been created, and radiation protection laws and regulations have been enacted.
In the 21st century, regulations are becoming even stricter. The permissible limits for ionizing radiation intensity are consistently being revised downward. The concept of radiation protection now includes regulations for the handling of non-ionizing radiation.
In the Federal Republic of Germany, radiation protection regulations are developed and issued by the Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection. The Federal Office for Radiation Protection is involved in the technical work. In Switzerland, the Radiation Protection Division of the Federal Office of Public Health is responsible, and in Austria, the Ministry of Climate Action and Energy.
X-rays
Early radiation consequences
The discovery of X-rays by Wilhelm Conrad Röntgen in 1895 led to extensive experimentation by scientists, physicians, and inventors. The first X-ray machines produced extremely unfavorable radiation spectra for imaging with extremely high skin doses. In February 1896, John Daniel and William Lofland Dudley of Vanderbilt University conducted an experiment in which Dudley's head was X-rayed, resulting in hair loss. Herbert D. Hawks, a graduate of Columbia University, suffered severe burns on his hands and chest during demonstration experiments with X-rays. Burns and hair loss were reported in scientific journals. Nikola Tesla was one of the first researchers to explicitly warn of the potential dangers of X-rays in the Electrical Review on May 5, 1897 - after initially claiming them to be completely harmless. He suffered massive radiation damage after his experiments. Nevertheless, some doctors at the time still claimed that X-rays had no effect on humans. Until the 1940s, X-ray machines were operated without any protective safeguards.Röntgen himself was spared the fate of the other X-ray users by habit. He always carried the unexposed photographic plates in his pockets and found that they were exposed if he remained in the same room during the exposure. So he regularly left the room when he took X-rays.
The use of X-rays for diagnostic purposes in dentistry was made possible by the pioneering work of C. Edmund Kells, a New Orleans dentist who demonstrated them to dentists in Asheville, North Carolina, in July 1896. Kells committed suicide after suffering from radiation-induced cancer for many years. He had been amputated one finger at a time, later his entire hand, followed by his forearm and then his entire arm.
Otto Walkhoff, one of the most important German dentists in history, took X-rays of himself in 1896 and is considered a pioneer in dental radiology. He described the required exposure time of 25 minutes as an "ordeal". Braunschweig's medical community later commissioned him to set up and supervise a central X-ray facility. In 1898, the year radium was discovered, he also tested the use of radium in medicine in a self-experiment using an amount of 0.2 grams of radium bromide. Walkhoff observed that cancerous mice exposed to radium radiation died significantly later than a control group of untreated mice. He thus initiated the development of radiation research for the treatment of tumors.
The Armenian-American radiologist Mihran Krikor Kassabian, vice president of the American Roentgen Ray Society, was concerned about the irritating effects of X-rays. In a publication, he mentioned his increasing problems with his hands. Although Kassabian recognized X-rays as the cause, he avoided making this reference so as not to hinder the progress of radiology. In 1902, he suffered a severe radiation burn on his hand. Six years later, the hand became necrotic and two fingers of his left hand were amputated. Kassabian kept a diary and photographed his hands as the tissue damage progressed. He died of cancer in 1910.
Many of the early X-ray and radioactivity researchers went down in history as "martyrs for science." In her article, The Miracle and the Martyrs, Sarah Zobel of the University of Vermont tells of a 1920 banquet held to honor many of the pioneers of X-rays. Chicken was served for dinner: "Shortly after the meal was served, it could be seen that some of the participants were unable to enjoy the meal. After years of working with X-rays, many of the participants had lost fingers or hands due to radiation exposure and were unable to cut the meat themselves". The first American to die from radiation exposure was Clarence Madison Dally, an assistant to Thomas Alva Edison. Edison began studying X-rays almost immediately after Röntgen's discovery and delegated the task to Dally. Over time, Dally underwent more than 100 skin operations due to radiation damage. Eventually, both of his arms had to be amputated. His death led Edison to abandon all further X-ray research in 1904.
One of the pioneers was the Austrian Gustav Kaiser, who in 1896 succeeded in photographing a double toe with an exposure time of 1½-2 hours. Due to the limited knowledge at the time, he also suffered severe radiation damage to his hands, losing several fingers and his right metacarpal. His work was the basis for, among other things, the construction of lead rubber aprons. Heinrich Albers-Schönberg, the world's first professor of radiology, recommended gonadal protection for testicles and ovaries in 1903. He was one of the first to protect germ cells not only from acute radiation damage but also from small doses of radiation that could accumulate over time and cause late damage. Albers-Schönberg died at the age of 56 from radiation damage, as did Guido Holzknecht and Elizabeth Fleischman.
Since April 4, 1936, a radiology memorial in the garden of Hamburg's St. Georg Hospital has commemorated the 359 victims from 23 countries who were among the first medical users of X-rays.
Initial warnings
In 1896, the engineer Wolfram Fuchs, based on his experience with numerous X-ray examinations, recommended keeping the exposure time as short as possible, staying away from the tube, and covering the skin with Vaseline. In 1897, Chicago doctors William Fuchs and Otto Schmidt became the first users to have to pay compensation to a patient for radiation damage.In 1901, dentist William Herbert Rollins called for using lead-glass goggles when working with X-rays, for the X-ray tube to be encased in lead, and for all areas of the body to be covered with lead aprons. He published over 200 articles on the potential dangers of X-rays, but his suggestions were long ignored. A year later, Rollins wrote in despair that his warnings about the dangers of X-rays were not being heeded by either the industry or his colleagues. By this time, Rollins had demonstrated that X-rays could kill laboratory animals and induce miscarriages in guinea pigs. Rollins' achievements were not recognized until later. Since then, he has gone down in the history of radiology as the "father of radiation protection". He became a member of the Radiological Society of North America and its first treasurer.
Radiation protection continued to develop with the invention of new measuring devices such as the chromoradiometer by Guido Holzknecht in 1902, the radiometer by Raymond Sabouraud and Henri Noiré in 1904/05, and the quantimeter by Robert Kienböck in 1905, which made it possible to determine maximum doses at which there was a high probability that no skin changes would occur. Radium was also included by the British Roentgen Society, which published its first memorandum on radium protection in 1921.
Unnecessary applications
Pedoscope
Since the 1920s, pedoscopes have been installed in many shoe stores in North America and Europe, more than 10,000 in the U.S. alone, following the invention of Jacob Lowe, a Boston physicist. They were X-ray machines used to check the fit of shoes and to promote sales, especially to children. Children were particularly fascinated by the sight of their footbones. X-rays were often taken several times daily to evaluate the fit of different shoes. Most were available in shoe stores until the early 1970s. The energy dose absorbed by the customer was up to 116 rads, or 1.16 grays. In the 1950s, when medical knowledge of the health risks was already available, pedoscopes came with warnings that shoe-buyers should not be scanned more than three times a day and twelve times a year.By the early 1950s, several professional organizations issued warnings against the continued use of shoe-mounted fluoroscopes, including the American Conference of Governmental Industrial Hygienists, the American College of Surgeons, the New York Academy of Medicine, and the American College of Radiology. At the same time, the District of Columbia enacted regulations requiring that shoe-mounted fluoroscopes be operated only by a licensed physical therapist. A few years later, the state of Massachusetts passed regulations stating that these machines could only be operated by a licensed physician. In 1957, the use of shoe-mounted fluoroscopes was banned by court order in Pennsylvania. By 1960, these measures and pressure from insurance companies led to the disappearance of the shoe-mounted fluoroscope, at least in the United States.
In Switzerland, there were 1,500 shoe-mounted fluoroscopes in use, 850 were required to be inspected by the Swiss Electrotechnical Association by a decree of the Federal Department of Home Affairs on October 7, 1963. The last one was decommissioned in 1990.
In Germany, the machines were not banned until 1976. The fluoroscopy machine emitted uncontrolled X-rays, which continuously exposed children, parents, and sales staff. The all-wood cabinet of the machine did not prevent the X-rays from passing through, resulting in particularly high cumulative radiation levels for the cashier when the pedoscope was placed near the cash register. It is clear that the machine was not designed with proper safety measures in place, leading to dangerous levels of radiation exposure. The well-established long-term effects of X-rays, including genetic damage and carcinogenicity, suggest that the use of pedoscopes worldwide over several decades may have contributed to health effects. However, it cannot be definitively proven that they were the sole cause. For example, a direct link has been discussed in the case of basal cell carcinoma of the foot. In 1950, a case was published in which a shoe model had to have a leg amputated as a result.