Radioactive waste


Radioactive waste is a type of hazardous waste that contains radioactive material. It is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, nuclear decommissioning, rare-earth mining, and nuclear weapons reprocessing. The storage and disposal of radioactive waste is regulated by government agencies in order to protect human health and the environment.
Radioactive waste is broadly classified into 3 categories: low-level waste, such as paper, rags, tools, clothing, which contain small amounts of mostly short-lived radioactivity; intermediate-level waste, which contains higher amounts of radioactivity and requires some shielding; and high-level waste, which is highly radioactive and hot due to decay heat, thus requiring cooling and shielding.
Spent nuclear fuel can be processed in nuclear reprocessing plants. One third of the total amount have already been reprocessed. With nuclear reprocessing 96% of the spent fuel can be recycled back into uranium-based and mixed-oxide fuels. The residual 4% is minor actinides and fission products, the latter of which are a mixture of stable and quickly decaying elements, medium lived fission products such as strontium-90 and caesium-137 and finally seven long-lived fission products with half-lives in the hundreds of thousands to millions of years. The minor actinides, meanwhile, are heavy elements other than uranium and plutonium which are created by neutron capture. Their half-lives range from years to millions of years and as alpha emitters they are particularly radiotoxic. While there are proposed – and to a much lesser extent current – uses of all those elements, commercial-scale reprocessing using the PUREX-process disposes of them as waste together with the fission products. The waste is subsequently converted into a glass-like ceramic for storage in a deep geological repository.
The time radioactive waste must be stored depends on the type of waste and radioactive isotopes it contains. Short-term approaches to radioactive waste storage have been segregation and storage on the surface or near-surface of the earth. Burial in a deep geological repository is a favored solution for long-term storage of high-level waste, while re-use and transmutation are favored solutions for reducing the HLW inventory. Boundaries to recycling of spent nuclear fuel are regulatory and economic as well as the problem of radioactive contamination if chemical separation processes cannot achieve a very high purity. Furthermore, elements may be present in both useful and troublesome isotopes, which would require costly and energy intensive isotope separation for their use – a currently uneconomic prospect.
A summary of the amounts of radioactive waste and management approaches for most developed countries are presented and reviewed periodically as part of a joint convention of the International Atomic Energy Agency.

Nature and significance

A quantity of radioactive waste typically consists of a number of radionuclides, which are unstable isotopes of elements that undergo decay and thereby emit ionizing radiation, which is harmful to humans and the environment. Different isotopes emit different types and levels of radiation, which last for different periods of time.

Physics

The radioactivity of all radioactive waste weakens with time. All radionuclides contained in the waste have a half-life—the time it takes for half of the atoms to decay into another nuclide. Eventually, all radioactive waste decays into non-radioactive elements. Since radioactive decay follows the half-life rule, the rate of decay is inversely proportional to the duration of decay. In other words, the radiation from a long-lived isotope like iodine-129 will be much less intense than that of a short-lived isotope like iodine-131. The two tables show some of the major radioisotopes, their half-lives, and their radiation yield as a proportion of the yield of fission of uranium-235.
The energy and the type of the ionizing radiation emitted by a radioactive substance are also important factors in determining its threat to humans. The chemical properties of the radioactive element will determine how mobile the substance is and how likely it is to spread into the environment and contaminate humans. This is further complicated by the fact that many radioisotopes do not decay immediately to a stable state but rather to radioactive decay products within a decay chain before ultimately reaching a stable state.

Pharmacokinetics

Exposure to radioactive waste may cause health impacts due to ionizing radiation exposure. In humans, a dose of 1 sievert carries a 5.5% risk of developing cancer, and regulatory agencies assume the risk is linearly proportional to dose even for low doses. Ionizing radiation can cause deletions in chromosomes. If a developing organism such as a fetus is irradiated, it is possible a birth defect may be induced, but it is unlikely this defect will be in a gamete or a gamete-forming cell. The incidence of radiation-induced mutations in humans is small, as in most mammals, because of natural cellular-repair mechanisms, many just now coming to light. These mechanisms range from DNA, mRNA and protein repair, to internal lysosomic digestion of defective proteins, and even induced cell suicide—apoptosis
Depending on the decay mode and the pharmacokinetics of an element, the threat due to exposure to a given activity of a radioisotope will differ. For instance, iodine-131 is a short-lived beta and gamma emitter, but because it concentrates in the thyroid gland, it is more able to cause injury than caesium-137 which, being water soluble, is rapidly excreted through urine. In a similar way, the alpha emitting actinides and radium are considered very harmful as they tend to have long biological half-lives and their radiation has a high relative biological effectiveness, making it far more damaging to tissues per amount of energy deposited. Because of such differences, the rules determining biological injury differ widely according to the radioisotope, time of exposure, and sometimes also the nature of the chemical compound which contains the radioisotope.

Nuclear fuel cycle

Front end

Waste from the front end of the nuclear fuel cycle is usually alpha-emitting waste from the extraction of uranium. It often contains radium and its decay products.
Uranium dioxide concentrate from mining is a thousand or so times as radioactive as the granite used in buildings. It is refined from yellowcake, then converted to uranium hexafluoride gas. As a gas, it undergoes enrichment to increase the U-235 content from 0.7% to about 4.4%. It is then turned into a hard ceramic oxide for assembly as reactor fuel elements.
The main by-product of enrichment is depleted uranium, principally the U-238 isotope, with a U-235 content of ~0.3%. It is stored, either as UF6 or as U3O8. Some is used in applications where its extremely high density makes it valuable such as anti-tank shells, and on at least one occasion even a sailboat keel. It is also used with plutonium for making mixed oxide fuel and to dilute, or downblend, highly enriched uranium from weapons stockpiles which is now being redirected to become reactor fuel.

Back end

The back-end of the nuclear fuel cycle, mostly spent fuel rods, contains fission products that emit beta and gamma radiation, and actinides that emit alpha particles, such as uranium-234, neptunium-237, plutonium-238 and americium-241, and even sometimes some neutron emitters such as californium. These isotopes are formed in nuclear reactors.
It is important to distinguish the processing of uranium to make fuel from the reprocessing of used fuel. Used fuel contains the highly radioactive products of fission. Many of these are neutron absorbers, called neutron poisons in this context. These eventually build up to a level where they absorb so many neutrons that the chain reaction stops, even with the control rods completely removed from a reactor. At that point, the fuel has to be replaced in the reactor with fresh fuel, even though there is still a substantial quantity of uranium-235 and plutonium present. In the United States, this used fuel is usually "stored", while in other countries such as Russia, the United Kingdom, France, Japan, and India, the fuel is reprocessed to remove the fission products, and the fuel can then be re-used. The fission products removed from the fuel are a concentrated form of high-level waste as are the chemicals used in the process. While most countries reprocess the fuel carrying out single plutonium cycles, India is planning multiple plutonium recycling schemes and Russia pursues closed cycle.

Fuel composition and long term radioactivity

The use of different fuels in nuclear reactors results in different spent nuclear fuel composition, with varying activity curves. The most abundant material being U-238 with other uranium isotopes, other actinides, fission products and activation products.
Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different.
An example of this effect is the use of nuclear fuels with thorium. Th-232 is a fertile material that can undergo a neutron capture reaction and two beta minus decays, resulting in the production of fissile U-233. The SNF of a cycle with thorium will contain U-233. Its radioactive decay will strongly influence the long-term activity curve of the SNF for around a million years. A comparison of the activity associated to U-233 for three different SNF types can be seen in the figure on the top right. The burnt fuels are thorium with reactor-grade plutonium, thorium with weapons-grade plutonium, and Mixed oxide fuel. For RGPu and WGPu, the initial amount of U-233 and its decay for around a million years can be seen. This has an effect on the total activity curve of the three fuel types. The initial absence of U-233 and its daughter products in the MOX fuel results in a lower activity in region 3 of the figure at the bottom right, whereas for RGPu and WGPu the curve is maintained higher due to the presence of U-233 that has not fully decayed. Nuclear reprocessing can remove the actinides from the spent fuel so they can be used or destroyed.