Hadley cell
The Hadley cell, also known as the Hadley circulation, is a global-scale tropical atmospheric circulation that features air rising near the equator, flowing poleward near the tropopause at a height of above the Earth's surface, cooling and descending in the subtropics at around 30 degrees latitude, and then returning equatorward near the surface. It is a thermally direct circulation within the troposphere that emerges due to differences in insolation and heating between the tropics and the subtropics. On a yearly average, the circulation is characterized by a circulation cell on each side of the equator. The Southern Hemisphere Hadley cell is slightly stronger on average than its northern counterpart, extending slightly beyond the equator into the Northern Hemisphere. During the summer and winter months, the Hadley circulation is dominated by a single, cross-equatorial cell with air rising in the summer hemisphere and sinking in the winter hemisphere. Analogous circulations may occur in extraterrestrial atmospheres, such as on Venus and Mars.
Global climate is greatly influenced by the structure and behavior of the Hadley circulation. The prevailing trade winds are a manifestation of the lower branches of the Hadley circulation, converging air and moisture in the tropics to form the Intertropical Convergence Zone where the Earth's heaviest rains are located. Shifts in the ITCZ associated with the seasonal variability of the Hadley circulation cause monsoons. The sinking branches of the Hadley cells give rise to the oceanic subtropical ridges and suppress rainfall; many of the Earth's deserts and arid regions are located in the subtropics coincident with the position of the sinking branches. The Hadley circulation is also a key mechanism for the meridional transport of heat, angular momentum and moisture, contributing to the subtropical jet stream, the moist tropics and maintaining a global thermal equilibrium.
The Hadley circulation is named after George Hadley, who in 1735 postulated the existence of hemisphere-spanning circulation cells driven by differences in heating to explain the trade winds. Other scientists later developed similar arguments or critiqued Hadley's qualitative theory, providing more rigorous explanations and formalism. The existence of a broad meridional circulation of the type suggested by Hadley was confirmed in the mid-20th century once routine observations of the upper troposphere became available via radiosondes. Observations and climate modelling indicate that the Hadley circulation has expanded poleward since at least the 1980s as a result of climate change, with an accompanying but less certain intensification of the circulation; these changes have been associated with trends in regional weather patterns. Model projections suggest that the circulation will widen and weaken throughout the 21st century due to climate change.
Mechanism and characteristics
The Hadley circulation describes the broad, thermally direct and meridional overturning of air within the troposphere over the low latitudes. Within the global atmospheric circulation, the meridional flow of air averaged along lines of latitude are organized into circulations of rising and sinking motions coupled with the equatorward or poleward movement of air called meridional cells. These include the prominent "Hadley cells" centered over the tropics and the weaker "Ferrel cells" centered over the mid-latitudes. The Hadley cells result from the contrast of insolation between the warm equatorial regions and the cooler subtropical regions. The uneven heating of Earth's surface results in regions of rising and descending air. Over the course of a year, the equatorial regions absorb more radiation from the Sun than they radiate away. At higher latitudes, the Earth emits more radiation than it receives from the Sun. Without a mechanism to exchange heat meridionally, the equatorial regions would warm and the higher latitudes would cool progressively in disequilibrium. The broad ascent and descent of air results in a pressure gradient force that drives the Hadley circulation and other large-scale flows in both the atmosphere and the ocean, distributing heat and maintaining a global long-term and subseasonal thermal equilibrium.The Hadley circulation covers almost half of the Earth's surface area, spanning from roughly the Tropic of Cancer to the Tropic of Capricorn. Vertically, the circulation occupies the entire depth of the troposphere. The Hadley cells comprising the circulation consist of air carried equatorward by the trade winds in the lower troposphere that ascends when heated near the equator, along with air moving poleward in the upper troposphere. Air that is moved into the subtropics cools and then sinks before returning equatorward to the tropics; the position of the sinking air associated with the Hadley cell is often used as a measure of the meridional width of the global tropics. The equatorward return of air and the strong influence of heating make the Hadley cell a thermally driven and enclosed circulation. Due to the buoyant rise of air near the equator and the sinking of air at higher latitudes, a pressure gradient develops near the surface with lower pressures near the equator and higher pressures in the subtropics; this provides the motive force for the equatorward flow in the lower troposphere. However, the release of latent heat associated with condensation in the tropics also relaxes the decrease in pressure with height, resulting in higher pressures aloft in the tropics compared to the subtropics for a given height in the upper troposphere; this pressure gradient is stronger than its near-surface counterpart and provides the motive force for the poleward flow in the upper troposphere. Hadley cells are most commonly identified using the mass-weighted, zonally averaged stream function of meridional winds, but they can also be identified by other measurable or derivable physical parameters such as velocity potential or the vertical component of wind at a particular pressure level.
Given the latitude and the pressure level, the Stokes stream function characterizing the Hadley circulation is given by
where is the radius of Earth, is the acceleration due to the gravity of Earth, and is the zonally averaged meridional wind at the prescribed latitude and pressure level. The value of gives the integrated meridional mass flux between the specified pressure level and the top of the Earth's atmosphere, with positive values indicating northward mass transport. The strength of the Hadley cells can be quantified based on including the maximum and minimum values or averages of the stream function both overall and at various pressure levels. Hadley cell intensity can also be assessed using other physical quantities such as the velocity potential, vertical component of wind, transport of water vapor, or total energy of the circulation.
Structure and components
The structure of the Hadley circulation and its components can be inferred by graphing zonal and temporal averages of global winds throughout the troposphere. At shorter timescales, individual weather systems perturb wind flow. Although the structure of the Hadley circulation varies seasonally, when winds are averaged annually the Hadley circulation is roughly symmetric and composed of two similar Hadley cells with one in each of the Northern and Southern hemispheres, sharing a common region of ascending air near the equator; however, the Southern Hemisphere Hadley cell is stronger. The winds associated with the annually averaged Hadley circulation are on the order of. However, when averaging the motions of air parcels as opposed to the winds at fixed locations, the Hadley circulation manifests as a broader circulation that extends farther poleward. Each Hadley cell can be described by four primary branches of airflow within the tropics:- An equatorward, lower branch within the planetary boundary layer
- An ascending branch near the equator
- A poleward, upper branch in the upper troposphere
- A descending branch in the subtropics
The ascent of air rises into the upper troposphere to a height of, after which air diverges outward from the ITCZ and towards the poles. The top of the Hadley cell is set by the height of the tropopause as the stable stratosphere above prevents the continued ascent of air. Air arising from the low latitudes has higher absolute angular momentum about Earth's axis of rotation. The distance between the atmosphere and Earth's axis decreases poleward; to conserve angular momentum, poleward-moving air parcels must accelerate eastward. The Coriolis effect limits the poleward extent of the Hadley circulation, accelerating air in the direction of the Earth's rotation and forming a jet stream directed zonally rather than continuing the poleward flow of air at each Hadley cell's poleward boundary. Considering only the conservation of angular momentum, a parcel of air at rest along the equator would accelerate to a zonal speed of by the time it reached 30° latitude. However, small-scale turbulence along the parcel's poleward trek and large-scale eddies in the mid-latitude dissipate angular momentum. The jet associated with the Southern Hemisphere Hadley cell is stronger than its northern counterpart due to the stronger intensity of the Southern Hemisphere cell. The cooler, higher latitudes leads to cooling of air parcels, which causes the poleward air to eventually descend. When the movement of air is averaged annually, the descending branch of the Hadley cell is located roughly over the 25th parallel north and the 25th parallel south. The moisture in the subtropics is then partly advected poleward by eddies and partly advected equatorward by the lower branch of the Hadley cell, where it is later brought towards the ITCZ. Although the zonally averaged Hadley cell is organized into four main branches, these branches are aggregations of more concentrated air flows and regions of mass transport.
Several theories and physical models have attempted to explain the latitudinal width of the Hadley cell. The Held–Hou Model provides one theoretical constraint on the meridional extent of the Hadley cells. By assuming a simplified atmosphere composed of a lower layer subject to friction from the Earth's surface and an upper layer free from friction, the model predicts that the Hadley circulation would be restricted to within of the equator if parcels do not have any net heating within the circulation. According to the Held–Hou Model, the latitude of the Hadley cell's poleward edge scales according to
where is the difference in potential temperature between the equator and the pole in radiative equilibrium, is the height of the tropopause, is the Earth's rotation rate, and is a reference potential temperature. Other compatible models posit that the width of the Hadley cell may scale with other physical parameters such as the vertically averaged Brunt–Väisälä frequency in the tropopshere or the growth rate of baroclinic waves shed by the cell.