Sun


The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light and infrared radiation with 10% at ultraviolet energies. It is the main source of energy for life on Earth. The Sun has been an object of veneration in many cultures and a central subject for astronomical research since antiquity.
The Sun orbits the Galactic Center at a distance of 24,000 to 28,000 light-years. Its mean distance from Earth is about or about 8 light-minutes. The distance between the Sun and the Earth was used to define a unit of length called the astronomical unit, now defined to be. Its diameter is about , 109 times that of Earth. The Sun's mass is about 330,000 times that of Earth, making up about 99.86% of the total mass of the Solar System. The mass of the Sun's surface layer, its photosphere, consists mostly of hydrogen and helium, with much smaller quantities of heavier elements, including oxygen, carbon, neon, and iron.
The Sun formed approximately 4.6 billion years ago from the gravitational collapse of matter within a region of a large molecular cloud. Most of this matter gathered in the centre; the rest flattened into an orbiting disk that became the Solar System. The central mass became so hot and dense that it eventually initiated nuclear fusion in its core. It is now classified as a G-type main-sequence star. Every second, the Sun's core fuses about 600 billion kilograms of hydrogen into helium and converts 4 billion kilograms of matter into energy.
About 4 to 7 billion years from now, when hydrogen fusion in the Sun's core diminishes to the point where the Sun is no longer in hydrostatic equilibrium, its core will undergo a marked increase in density and temperature which will cause its outer layers to expand, eventually transforming the Sun into a red giant. After the red giant phase, models suggest the Sun will shed its outer layers and become a dense type of cooling star, and no longer produce energy by fusion, but will still glow and give off heat from its previous fusion for perhaps trillions of years. After that, it is theorised to become an extremely dense black dwarf, giving off negligible energy.

Etymology

The English word sun developed from Old English sunne. Cognates appear in other Germanic languages, including West Frisian sinne, Dutch zon, Low German Sünn, Standard German Sonne, Bavarian Sunna, Old Norse sunna, and Gothic sunnō. All these words stem from Proto-Germanic *sunnōn. This is ultimately related to the word for sun in other branches of the Indo-European language family, though in most cases a nominative stem with an l is found, rather than the genitive stem in n, as for example in Latin sōl, ancient Greek ἥλιος, Welsh haul and Czech slunce, as well as Sanskrit स्वर् and Persian خور. Indeed, the l-stem survived in Proto-Germanic as well, as *sōwelan, which gave rise to Gothic sauil and Old Norse prosaic sól, and through it the words for sun in the modern Scandinavian languages: Swedish and Danish sol, Icelandic sól, etc.
The principal adjectives for the Sun in English are sunny for sunlight and, in technical contexts, solar, from Latin sol. From the Greek comes the rare adjective heliac. In English, the Greek and Latin words occur in poetry as personifications of the Sun, Helios and Sol, while in science fiction Sol may be used to distinguish the Sun from other stars. The term sol with a lowercase s is used by planetary astronomers for the duration of a solar day on another planet such as Mars.
The astronomical symbol for the Sun is a circle with a central dot: ☉. It is used for such units as M, R and L. The scientific study of the Sun is called heliology.

General characteristics

The Sun is a G-type main-sequence star that makes up about 99.86% of the mass of the Solar System. It has an absolute magnitude of +4.83, estimated to be brighter than about 85% of the stars in the Milky Way, most of which are red dwarfs. It is more massive than 95% of the stars within.
The Sun is a Population I, or heavy-element-rich, star. Its formation approximately 4.6 billion years ago may have been triggered by shockwaves from one or more nearby supernovae. This is suggested by a high abundance of heavy elements in the Solar System, such as gold and uranium, relative to the abundances of these elements in so-called Population II, heavy-element-poor, stars. The heavy elements could most plausibly have been produced by endothermic nuclear reactions during a supernova, or by transmutation through neutron absorption within a massive second-generation star.
The Sun is by far the brightest object in the Earth's sky, with an apparent magnitude of −26.74. This is just less than 13 billion times brighter than the next brightest star, Sirius, which has an apparent magnitude of −1.46.
was originally defined as the mean distance between the centres of the Sun and the Earth. The instantaneous distance varies by about as Earth moves from perihelion around 3 January to aphelion around 4 July. At its average distance, light travels from the Sun's horizon to Earth's horizon in about 8 minutes and 20 seconds, while light from the closest points of the Sun and Earth takes about two seconds less. In 2012 the au was defined to be 149,597,870,700 m.
The energy of this sunlight supports almost all life on Earth by photosynthesis, and drives Earth's climate and weather.
The Sun does not have a definite boundary, but its density decreases exponentially with increasing height above the photosphere. For the purpose of measurement, the Sun's radius is considered to be the distance from its centre to the edge of the photosphere, the apparent visible surface of the Sun.
The roundness of the Sun is the relative difference between its radius at its equator,, and at its pole,, called the oblateness,
The value is difficult to measure. Atmospheric distortion means the measurement must be done on satellites; the value is very small meaning very precise technique is needed.
The oblateness was once proposed to be sufficient to explain the perihelion precession of Mercury but Einstein proposed that general relativity could explain the precession using a spherical Sun. When high precision measurements of the oblateness became available via the Solar Dynamics Observatory and the
Picard satellite the measured value was even smaller than expected,, or 8 parts per million.
These measurements determined the Sun to be the natural object closest to a perfect sphere ever observed. The oblateness value remains constant independent of solar irradiation changes. The tidal effect of the planets is weak and does not significantly affect the shape of the Sun.

Rotation

The Sun rotates faster at its equator than at its poles. This differential rotation is caused by convective motion due to heat transport and the Coriolis force due to the Sun's rotation. In a frame of reference defined by the stars, the rotational period is approximately 25.6 days at the equator and 33.5 days at the poles. Viewed from Earth as it orbits the Sun, the apparent rotational period of the Sun at its equator is about 28 days. Viewed from a vantage point above its north pole, the Sun rotates counterclockwise around its axis of spin.
A survey of solar analogues suggests the early Sun was rotating up to ten times faster than it does today. This would have made the surface much more active, with greater X-ray and UV emission. Sunspots would have covered of the surface. The rotation rate was gradually slowed by magnetic braking, as the Sun's magnetic field interacted with the outflowing solar wind. A vestige of this rapid primordial rotation still survives at the Sun's core, which rotates at a rate of once per week; four times the mean surface rotation rate.

Composition

The Sun consists mainly of the elements hydrogen and helium. At this time in the Sun's life, they account for 74.9% and 23.8%, respectively, of the mass of the Sun in the photosphere. All heavier elements, called metals in astronomy, account for less than 2% of the mass, with oxygen, carbon, neon, and iron being the most abundant.
The Sun's original chemical composition was inherited from the interstellar medium out of which it formed. Originally it would have been about 71.1% hydrogen, 27.4% helium, and 1.5% heavier elements. The hydrogen and most of the helium in the Sun would have been produced by Big Bang nucleosynthesis in the first 20 minutes of the universe, and the heavier elements were produced by previous generations of stars before the Sun was formed, and spread into the interstellar medium during the final stages of stellar life and by events such as supernovae.
Since the Sun formed, the main fusion process has involved fusing hydrogen into helium. Over the past 4.6 billion years, the amount of helium and its location within the Sun has gradually changed. The proportion of helium within the core has increased from about 24% to about 60% due to fusion, and some of the helium and heavy elements have settled from the photosphere toward the centre of the Sun because of gravity. The proportions of heavier elements are unchanged. Heat is transferred outward from the Sun's core by radiation rather than by convection, so the fusion products are not lifted outward by heat; they remain in the core, and gradually an inner core of helium has begun to form that cannot be fused because presently the Sun's core is not hot or dense enough to fuse helium. In the current photosphere, the helium fraction is reduced, and the metallicity is only 84% of what it was in the protostellar phase. In the future, helium will continue to accumulate in the core, and in about 5 billion years this gradual build-up will eventually cause the Sun to exit the main sequence and become a red giant.
The chemical composition of the photosphere is normally considered representative of the composition of the primordial Solar System. Typically, the solar heavy-element abundances described above are measured both by using spectroscopy of the Sun's photosphere and by measuring abundances in meteorites that have never been heated to melting temperatures. These meteorites are thought to retain the composition of the protostellar Sun and are thus not affected by the settling of heavy elements. The two methods generally agree well.