Geological history of Earth


The geological history of Earth follows the major geological events in Earth's past based on the geologic time scale, a system of chronological measurement based on the study of the planet's rock layers. Earth formed approximately 4.54 billion years ago through accretion from the solar nebula, a disk-shaped mass of dust and gas remaining from the formation of the Sun, which also formed the rest of the Solar System.
Initially, Earth was molten due to extreme volcanism and frequent collisions with other bodies. Eventually, the outer layer of the planet cooled to form a solid crust when water began accumulating in the atmosphere. The Moon formed soon afterwards, possibly as a result of the impact of a protoplanet with Earth. Outgassing and volcanic activity produced the primordial atmosphere. Condensing water vapor, augmented by ice delivered from asteroids, produced the oceans. However, in 2020, researchers reported that sufficient water to fill the oceans may have always been on Earth since the beginning of the planet's formation.
As the surface continually reshaped itself over hundreds of millions of years, continents formed and broke apart. They migrated across the surface, occasionally combining to form a supercontinent. Roughly, the earliest-known supercontinent Rodinia, began to break apart. The continents later recombined to form Pannotia,, then finally Pangaea, which broke apart.
The present pattern of ice ages began about, then intensified at the end of the Pliocene. The polar regions have since undergone repeated cycles of glaciation and thawing, repeating every 40,000–100,000 years. The Last Glacial Period of the current ice age ended about 10,000 years ago.

Precambrian

The Precambrian includes approximately 90% of geologic time. It extends from 4.6 billion years ago to the beginning of the Cambrian Period. It includes the first three of the four eons of Earth's prehistory and precedes the Phanerozoic eon.
Major volcanic events altering Earth's environment and causing extinctions may have occurred 10 times in the past 3 billion years.

Hadean Eon

During Hadean time, the Solar System was forming, probably within a large cloud of gas and dust around the Sun, called an accretion disc from which Earth formed.
The Hadean Eon is not formally recognized, but it essentially marks the era before we have adequate record of significant solid rocks. The oldest dated zircons date from about.
Earth was initially molten due to extreme volcanism and frequent collisions with other bodies. Eventually, the outer layer of the planet cooled to form a solid crust when water began accumulating in the atmosphere. The Moon formed soon afterwards, possibly as a result of the impact of a large planetoid with Earth. More recent potassium isotopic studies suggest that the Moon was formed by a smaller, high-energy, high-angular-momentum giant impact cleaving off a significant portion of Earth. Some of this object's mass merged with Earth, significantly altering its internal composition, and a portion was ejected into space. Some of the material survived to form the orbiting Moon. Outgassing and volcanic activity produced the primordial atmosphere. Condensing water vapor, augmented by ice delivered from comets, produced the oceans. However, in 2020, researchers reported that sufficient water to fill the oceans may have always been on Earth since the beginning of the planet's formation.
During the Hadean the Late Heavy Bombardment occurred during which a large number of impact craters are believed to have formed on the Moon, and by inference on Earth, Mercury, Venus, and Mars as well. However, some scientists argue against this hypothetical Late Heavy Bombardment, pointing out that the conclusion has been drawn from data which are not fully representative.

Archean Eon

Earth of the early Archean may have had a different tectonic style. It is widely believed that the early Earth was dominated by vertical tectonic processes, such as stagnant lid, heat-pipe, or sagduction, which eventually transitioned to plate tectonics during the planet's mid-stage evolution. However, an alternative view proposes that Earth never experienced a vertical tectonic phase and that plate tectonics have been active throughout its entire history. During this time, Earth's crust cooled enough that rocks and continental plates began to form. Some scientists think because Earth was hotter in the past, plate tectonic activity was more vigorous than it is today, resulting in a much greater rate of recycling of crustal material. This may have prevented cratonization and continent formation until the mantle cooled and convection slowed down. Others argue that the subcontinental lithospheric mantle is too buoyant to subduct and that the lack of Archean rocks is a function of erosion and subsequent tectonic events. Some geologists view the sudden increase in aluminum content in zircons as an indicator of the beginning of plate tectonics.
Unlike Proterozoic rocks, Archean rocks are distinguished by the presence of heavily metamorphosed deep-water sediments, such as graywackes, mudstones, volcanic sediments and banded iron formations. Greenstone belts are typical Archean formations, consisting of alternating high- and low-grade metamorphic rocks. The high-grade rocks were derived from volcanic island arcs, while the low-grade metamorphic rocks represent deep-sea sediments eroded from the neighboring island rocks and deposited in a forearc basin. In short, greenstone belts represent sutured protocontinents.
The Earth's magnetic field was established 3.5 billion years ago. The solar wind flux was about 100 times the value of the modern Sun, so the presence of the magnetic field helped prevent the planet's atmosphere from being stripped away, which is what probably happened to the atmosphere of Mars. However, the field strength was lower than at present and the magnetosphere was about half the modern radius.

Proterozoic Eon

The geologic record of the Proterozoic is more complete than that for the preceding Archean. In contrast to the deep-water deposits of the Archean, the Proterozoic features many strata that were laid down in extensive shallow epicontinental seas; furthermore, many of these rocks are less metamorphosed than Archean-age ones, and plenty are unaltered. Study of these rocks shows that the eon featured massive, rapid continental accretion, supercontinent cycles, and wholly modern orogenic activity. Roughly, the earliest-known supercontinent Rodinia, began to break apart. The continents later recombined to form Pannotia, 600–540 Ma.
The first-known glaciations occurred during the Proterozoic, one that began shortly after the beginning of the eon, while there were at least four during the Neoproterozoic, climaxing with the Snowball Earth of the Varangian glaciation.

Phanerozoic

The Phanerozoic Eon is the current eon in the geologic timescale. It covers roughly 539 million years. During this period continents drifted apart, but eventually collected into a single landmass known as Pangea, before splitting again into the current continental landmasses.
The Phanerozoic is divided into three eras – the Paleozoic, the Mesozoic and the Cenozoic.
Most of the evolution of multicellular life occurred during this time period.

Paleozoic Era

The Paleozoic era spanned roughly, and is subdivided into six geologic periods: from oldest to youngest, they are the Cambrian, Ordovician, Silurian, Devonian, Carboniferous and Permian. Geologically, the Paleozoic starts shortly after the breakup of a supercontinent called Pannotia and at the end of a global ice age. Throughout the early Paleozoic, Earth's landmass was broken up into a substantial number of relatively small continents. Toward the end of the era, the continents gathered together into a supercontinent called Pangaea, which included most of Earth's land area.

Cambrian Period

The Cambrian is a major division of the geologic timescale that begins about 538.8 ± 0.2 million years ago. Cambrian continents are thought to have resulted from the breakup of a Neoproterozoic supercontinent called Pannotia. The waters of the Cambrian period appear to have been widespread and shallow. Continental drift rates may have been anomalously high. Laurentia, Baltica and Siberia remained independent continents following the break-up of the supercontinent of Pannotia. Gondwana started to drift toward the South Pole. Panthalassa covered most of the southern hemisphere, and minor oceans included the Proto-Tethys Ocean, Iapetus Ocean and Khanty Ocean.

Ordovician period

The Ordovician period started at a major extinction event called the Cambrian–Ordovician extinction event some time about 485.4 ± 1.9 million years ago. During the Ordovician the southern continents were collected into a single continent called Gondwana. Gondwana started the period in the equatorial latitudes and, as the period progressed, drifted toward the South Pole. Early in the Ordovician the continents Laurentia, Siberia and Baltica were still independent continents, but Baltica began to move toward Laurentia later in the period, causing the Iapetus Ocean to shrink between them. Also, Avalonia broke free from Gondwana and began to head north toward Laurentia. The Rheic Ocean was formed as a result of this. By the end of the period, Gondwana had neared or approached the pole and was largely glaciated.
The Ordovician came to a close in a series of extinction events that, taken together, comprise the second-largest of the five major extinction events in Earth's history in terms of percentage of genera that became extinct. The only larger one was the Permian-Triassic extinction event. The extinctions occurred approximately and mark the boundary between the Ordovician and the following Silurian Period.
The most-commonly accepted theory is that these events were triggered by the onset of an ice age, in the Hirnantian faunal stage that ended the long, stable greenhouse conditions typical of the Ordovician. The ice age was probably not as long-lasting as once thought; study of oxygen isotopes in fossil brachiopods shows that it was probably no longer than 0.5 to 1.5 million years. The event was preceded by a fall in atmospheric carbon dioxide which selectively affected the shallow seas where most organisms lived. As the southern supercontinent Gondwana drifted over the South Pole, ice caps formed on it. Evidence of these ice caps has been detected in Upper Ordovician rock strata of North Africa and then-adjacent northeastern South America, which were south-polar locations at the time.