Snowball Earth


The Snowball Earth is a geohistorical hypothesis that proposes that during one or more of Earth's icehouse climates, the planet's surface became nearly entirely frozen with no liquid oceanic or surface water exposed to the atmosphere. The most academically mentioned period of such a global ice age is believed to have occurred some time before 650 mya during the Cryogenian period, which included at least two large glacial periods, the Sturtian and Marinoan glaciations.
Proponents of the hypothesis argue that it best explains sedimentary deposits that are generally believed to be of glacial origin at tropical palaeolatitudes and other enigmatic features in the geological record. Opponents of the hypothesis contest the geological evidence for global glaciation and the geophysical feasibility of an ice- or slush-covered ocean,
and they emphasize the difficulty of escaping an all-frozen condition. Several unanswered questions remain, including whether Earth was a full "snowball" or a "slushball" with a thin equatorial band of open water. The Snowball Earth episodes are proposed to have occurred before the sudden radiations of multicellular bioforms known as the Avalon and Cambrian explosions; the most recent Snowball episode may have triggered the evolution of multicellularity.

History

First evidence for ancient glaciation

Long before the idea of a global glaciation was first proposed, a series of discoveries occurred that accumulated evidence for ancient Precambrian glaciations. The first of these discoveries was published in 1871 by J. Thomson, who found ancient glacier-reworked material in Islay, Scotland. Similar findings followed in Australia and India. A fourth and very illustrative finding, which came to be known as "Reusch's Moraine", was reported by Hans Reusch in northern Norway in 1891. Many other findings followed, but their understanding was hampered by the rejection of continental drift.

Global glaciation proposed

, an Australian geologist and Antarctic explorer, spent much of his career studying the stratigraphy of the Neoproterozoic in South Australia, where he identified thick and extensive glacial sediments. As a result, late in his career, he speculated about the possibility of global glaciation.
Mawson's ideas of global glaciation, however, were based on the mistaken assumption that the geographic position of Australia, and those of other continents where low-latitude glacial deposits are found, have remained constant through time. With the advancement of the continental drift hypothesis, and eventually plate tectonic theory, came an easier explanation for the glaciogenic sediments—they were deposited at a time when the continents were at higher latitudes.
In 1964, the idea of global-scale glaciation reemerged when W. Brian Harland published a paper in which he presented palaeomagnetic data showing that glacial tillites in Svalbard and Greenland were deposited at tropical latitudes. From this data and the sedimentological evidence that the glacial sediments interrupt successions of rocks commonly associated with tropical to temperate latitudes, he argued that an ice age occurred that was so extreme that it resulted in marine glacial rocks being deposited in the tropics.
In the 1960s, Mikhail Budyko, a Soviet climatologist, developed a simple energy-balance climate model to investigate the effect of ice cover on global climate. Using this model, Budyko found that if ice sheets advanced far enough out of the polar regions, a feedback loop ensued where the increased reflectiveness of the ice led to further cooling and the formation of more ice, until the entire Earth was covered in ice and stabilized in a new ice-covered equilibrium. While Budyko's model showed that this ice-albedo stability could happen, he concluded that it had, in fact, never happened, as his model offered no way to escape from such a feedback loop.
In 1971, Aron Faegre, an American physicist, showed that a similar energy-balance model predicted three stable global climates, one of which was snowball Earth. This model introduced Edward Norton Lorenz's concept of intransitivity, indicating that there could be a major jump from one climate to another, including to snowball Earth.
The term "snowball Earth" was coined by Joseph Kirschvink in a short paper published in 1992 within a lengthy volume concerning the biology of the Proterozoic eon. The major contributions from this work were: the recognition that the presence of banded iron formations is consistent with such a global glacial episode, and the introduction of a mechanism by which to escape from a completely ice-covered Earth—specifically, the accumulation of CO2 from volcanic outgassing leading to an ultra-greenhouse effect.
Franklyn Van Houten's discovery of a consistent geological pattern in which lake levels rose and fell is now known as the "Van Houten cycle". His studies of phosphorus deposits and banded iron formations in sedimentary rocks made him an early adherent of the snowball Earth hypothesis postulating that the planet's surface froze more than 650 Ma.
Interest in the notion of a snowball Earth increased dramatically after Paul F. Hoffman and his co-workers applied Kirschvink's ideas to a succession of Neoproterozoic sedimentary rocks in Namibia and elaborated upon the hypothesis in the journal Science in 1998 by incorporating such observations as the occurrence of cap carbonates.
In 2010, Francis A. Macdonald, assistant professor at Harvard in the Department of Earth and Planetary Sciences, and others, reported evidence that Rodinia was at equatorial latitude during the Cryogenian period with glacial ice at or below sea level, and that the associated Sturtian glaciation was global.

Evidence

The snowball Earth hypothesis was originally devised to explain geological evidence for the apparent presence of glaciers at tropical latitudes. According to modelling, an ice–albedo feedback would result in glacial ice rapidly advancing to the equator once the glaciers spread to within 25° to 30° of the equator. Therefore, the presence of glacial deposits within the tropics suggests global ice cover.
Critical to an assessment of the validity of the theory, therefore, is an understanding of the reliability and significance of the evidence that led to the belief that ice ever reached the tropics. This evidence must prove three things:
  1. That a bed contains sedimentary structures that could have been formed only by glacial activity;
  2. That the bed lay within the tropics when it was deposited.
  3. That glaciers were active at different global locations at the same time, and that no other deposits of the same age are in existence.
This last point is very difficult to prove. Before the Ediacaran, the biostratigraphic markers usually used to correlate rocks are absent; therefore there is no way to prove that rocks in different places across the globe were deposited at the same time. The best that can be done is to estimate the age of the rocks using radiometric dating, which are rarely accurate to better than a million years or so.
The first two points are often the source of contention on a case-to-case basis. Many glacial features can also be formed by non-glacial means, and estimating the approximate latitudes of landmasses even as recently as 200 Ma can be riddled with difficulties.

Palaeomagnetism

The snowball Earth hypothesis was first posited to explain what were then considered to be glacial deposits near the equator. Since tectonic plates move slowly over time, ascertaining their position at a given point in Earth's long history is not easy. In addition to considerations of how the recognizable landmasses could have fit together, the latitude at which a rock was deposited can be constrained by palaeomagnetism.
When sedimentary rocks form, magnetic minerals within them tend to align with Earth's magnetic field. Through the precise measurement of this palaeomagnetism, it is possible to estimate the latitude where the rock matrix was formed. Palaeomagnetic measurements have indicated that some sediments of glacial origin in the Neoproterozoic rock record were deposited within 10 degrees of the equator, although the accuracy of this reconstruction is in question. This palaeomagnetic location of apparently glacial sediments has been taken to suggest that glaciers extended from land to sea level in tropical latitudes at the time the sediments were deposited. It is not clear whether this implies a global glaciation or the existence of localized, possibly land-locked, glacial regimes. Others have even suggested that most data do not constrain any glacial deposits to within 25° of the equator.
Skeptics suggest that the palaeomagnetic data could be corrupted if Earth's ancient magnetic field was substantially different from today's. Depending on the rate of cooling of Earth's core, it is possible that during the Proterozoic, the magnetic field did not approximate a simple dipolar distribution, with north and south magnetic poles roughly aligning with the planet's axis as they do today. Instead, a hotter core may have circulated more vigorously and given rise to 4, 8 or more poles. Palaeomagnetic data would then have to be re-interpreted, as the sedimentary minerals could have aligned pointing to a "west pole" rather than the north magnetic pole. Alternatively, Earth's dipolar field could have been oriented such that the poles were close to the equator. This hypothesis has been posited to explain the extraordinarily rapid motion of the magnetic poles implied by the Ediacaran palaeomagnetic record; the alleged motion of the north magnetic pole would occur around the same time as the Gaskiers glaciation.
Another weakness of reliance on palaeomagnetic data is the difficulty in determining whether the magnetic signal recorded is original, or whether it has been reset by later activity. For example, a mountain-building orogeny releases hot water as a by-product of metamorphic reactions; this water can circulate to rocks thousands of kilometers away and reset their magnetic signature. This makes the authenticity of rocks older than a few million years difficult to determine without painstaking mineralogical observations. Moreover, further evidence is accumulating that large-scale remagnetization events have taken place which may necessitate revision of the estimated positions of the palaeomagnetic poles.
There is currently only one deposit, the Elatina deposit of Australia, that was indubitably deposited at low latitudes; its depositional date is well-constrained, and the signal is demonstrably original.