Glacier
A glacier is a persistent body of dense ice, a form of rock, that is constantly moving downhill under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as crevasses and seracs, as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques, moraines, or fjords. Although a glacier may flow into a body of water, it forms only on land and is distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.
On Earth, 99% of glacial ice is contained within vast ice sheets in the polar regions, but glaciers may be found in mountain ranges on every continent other than the Australian mainland, including Oceania's high-latitude oceanic island countries such as New Zealand. Between latitudes 35°N and 35°S, glaciers occur only in the Himalayas, Andes, and a few high mountains in East Africa, Mexico, New Guinea and on Zard-Kuh in Iran. With more than 7,000 known glaciers, Pakistan has more glacial ice than any other country outside the polar regions. Glaciers cover about 10% of Earth's land surface. Continental glaciers cover nearly or about 98% of Antarctica's, with an average thickness of ice. Greenland and Patagonia also have huge expanses of continental glaciers. The volume of glaciers, not including the ice sheets of Antarctica and Greenland, has been estimated at 170,000 km3.
Glacial ice is the largest reservoir of fresh water on Earth, holding with ice sheets about 69% of the world's freshwater. Many glaciers from temperate, alpine and seasonal polar climates store water as ice during the colder seasons and release it later in the form of meltwater as warmer summer temperatures cause the glacier to melt, creating a water source that is especially important for plants, animals and human uses when other sources may be scant. However, within high-altitude and Antarctic environments, the seasonal temperature difference is often not sufficient to release meltwater.
Since glacial mass is affected by long-term climatic changes, e.g., precipitation, mean temperature, and cloud cover, glacial mass changes are considered among the most sensitive indicators of climate change and are a major source of variations in sea level.
A large piece of compressed ice, or a glacier, appears blue, as large quantities of water appear blue, because water molecules absorb other colors more efficiently than blue. The other reason for the blue color of glaciers is the lack of air bubbles. Air bubbles, which give a white color to ice, are squeezed out by pressure increasing the created ice's density.
Etymology and terminology
The word glacier is a loanword from French and goes back, via Franco-Provençal, to the Vulgar Latin glaciārium, derived from the Late Latin glacia, and ultimately Latin glaciēs, meaning "ice". The processes and features caused by or related to glaciers are referred to as glacial. The process of glacier establishment, growth and flow is called glaciation. The corresponding area of study is called glaciology. Glaciers are important components of the global cryosphere.Types
Classification by size, shape and behavior
Glaciers are categorized by their morphology, thermal characteristics, and behavior. Alpine glaciers form on the crests and slopes of mountains. A glacier that fills a valley is called a valley glacier, or alternatively, an alpine glacier or mountain glacier. A large body of glacial ice astride a mountain, mountain range, or volcano is termed an ice cap or ice field. Ice caps have an area less than by definition.Glacial bodies larger than are called ice sheets or continental glaciers. Several kilometers deep, they obscure the underlying topography. Only nunataks protrude from their surfaces. The only extant ice sheets are the two that cover most of Antarctica and Greenland. They contain vast quantities of freshwater, enough that if both melted, global sea levels would rise by over. Portions of an ice sheet or cap that extend into water are called ice shelves; they tend to be thin with limited slopes and reduced velocities. Narrow, fast-moving sections of an ice sheet are called ice streams. In Antarctica, many ice streams drain into large ice shelves. Some drain directly into the sea, often with an ice tongue, like Mertz Glacier.
Tidewater glaciers are glaciers that terminate in the sea, including most glaciers flowing from Greenland, Antarctica, Baffin, Devon, and Ellesmere Islands in Canada, Southeast Alaska, and the Northern and Southern Patagonian Ice Fields. As the ice reaches the sea, pieces break off or calve, forming icebergs. Most tidewater glaciers calve above sea level, which often results in a tremendous impact as the iceberg strikes the water. Tidewater glaciers undergo centuries-long cycles of advance and retreat that are much less affected by climate change than other glaciers.
Classification by thermal state
Thermally, a temperate glacier is at a melting point throughout the year, from its surface to its base. The ice of a polar glacier is always below the freezing threshold from the surface to its base, although the surface snowpack may experience seasonal melting. A subpolar glacier includes both temperate and polar ice, depending on the depth beneath the surface and position along the length of the glacier. In a similar way, the thermal regime of a glacier is often described by its basal temperature. A cold-based glacier is below freezing at the ice-ground interface and is thus frozen to the underlying substrate. A warm-based glacier is above or at freezing at the interface and is able to slide at this contact. This contrast is thought to a large extent to govern the ability of a glacier to effectively erode its bed, as sliding ice promotes plucking at rock from the surface below. Glaciers which are partly cold-based and partly warm-based are known as polythermal.Formation
Glaciers form where the accumulation of snow and ice exceeds ablation. A glacier usually originates from a cirque landform – a typically armchair-shaped geological feature – which collects and compresses through gravity the snow that falls into it. This snow accumulates and refreezes, turning into névé. Further crushing of the individual snowflakes and expelling the air from the snow turns it into firn and eventually "glacial ice". This glacial ice will fill the cirque until it "overflows" through a geological weakness or vacancy from the edge of the cirque called the "lip" or threshold. When the mass of snow and ice reaches sufficient thickness, it begins to move by a combination of surface slope, gravity, and pressure. On steeper slopes, this can occur with as little as of snow-ice.In temperate glaciers, snow repeatedly freezes and thaws, changing into granular ice or névé. Under the pressure of the layers of ice and snow above it, this granular snow fuses into denser firn. Over a period of years, layers of firn undergo further compaction and become glacial ice. Glacier ice is slightly more dense than ice formed from frozen water because glacier ice contains fewer trapped air bubbles.
Glacial ice has a distinctive blue tint because it absorbs some red light due to an overtone of the infrared OH stretching mode of the water molecule.
Structure
A glacier originates at a location called its glacier head and terminates at its glacier foot, snout, or terminus.Glaciers are broken into zones based on surface snowpack and melt conditions. The ablation zone is the region where there is a net loss in glacier mass. The upper part of a glacier, where accumulation exceeds ablation, is called the accumulation zone. The equilibrium line separates the ablation zone and the accumulation zone; it is the contour where the amount of new snow gained by accumulation is equal to the amount of ice lost through ablation. In general, the accumulation zone accounts for 60–70% of the glacier's surface area, more if the glacier calves icebergs. Ice in the accumulation zone is deep enough to exert a downward force that erodes underlying rock. After a glacier melts, it often leaves behind a bowl- or amphitheater-shaped depression that ranges in size from large basins like the Great Lakes to smaller mountain depressions known as cirques.
The accumulation zone can be subdivided based on its melt conditions.
- The dry snow zone is a region where no melt occurs, even in the summer, and the snowpack remains dry.
- The percolation zone is an area with some surface melt, causing meltwater to percolate into the snowpack. This zone is often marked by refrozen ice lenses, glands, and layers. The snowpack also never reaches the melting point.
- Near the equilibrium line on some glaciers, a superimposed ice zone develops. This zone is where meltwater refreezes as a cold layer in the glacier, forming a continuous mass of ice.
- The wet snow zone is the region where all of the snow deposited since the end of the previous summer has been raised to 0 °C.
Following the Little Ice Age's end around 1850, glaciers around the Earth have retreated substantially. A slight cooling led to the advance of many alpine glaciers between 1950 and 1985, but since 1985 glacier retreat and mass loss has become larger and increasingly ubiquitous.
Motion
Glaciers move downhill by the force of gravity and the internal deformation of ice. At the molecular level, ice consists of stacked layers of molecules with relatively weak bonds between layers. When the amount of strain is proportional to the stress being applied, ice will act as an elastic solid. Ice needs to be at least thick to even start flowing, but once its thickness exceeds about, stress on the layer above will exceeds the inter-layer binding strength, and then it will move faster than the layer below. This means that small amounts of stress can result in a large amount of strain, causing the deformation to become a plastic flow rather than elastic. Then, the glacier will begin to deform under its own weight and flow across the landscape. According to the Glen–Nye flow law, the relationship between stress and strain, and thus the rate of internal flow, can be modeled as follows:where:
The lowest velocities are near the base of the glacier and along valley sides where friction acts against flow, causing the most deformation. Velocity increases inward toward the center line and upward, as the amount of deformation decreases. The highest flow velocities are found at the surface, representing the sum of the velocities of all the layers below.
Because ice can flow faster where it is thicker, the rate of glacier-induced erosion is directly proportional to the thickness of overlying ice. Consequently, pre-glacial low hollows will be deepened and pre-existing topography will be amplified by glacial action, while nunataks, which protrude above ice sheets, barely erode at all – erosion has been estimated as 5 m per 1.2 million years. This explains, for example, the deep profile of fjords, which can reach a kilometer in depth as ice is topographically steered into them. The extension of fjords inland increases the rate of ice sheet thinning since they are the principal conduits for draining ice sheets. It also makes the ice sheets more sensitive to changes in climate and the ocean.
Although evidence in favor of glacial flow was known by the early 19th century, other theories of glacial motion were advanced, such as the idea that meltwater, refreezing inside glaciers, caused the glacier to dilate and extend its length. As it became clear that glaciers behaved to some degree as if the ice were a viscous fluid, it was argued that "regelation", or the melting and refreezing of ice at a temperature lowered by the pressure on the ice inside the glacier, was what allowed the ice to deform and flow. James Forbes came up with the essentially correct explanation in the 1840s, although it was several decades before it was fully accepted.