Information security
Information security is the practice of protecting information by mitigating information risks. It is part of information risk management. It typically involves preventing or reducing the probability of unauthorized or inappropriate access to data or the unlawful use, disclosure, disruption, deletion, corruption, modification, inspection, recording, or devaluation of information. It also involves actions intended to reduce the adverse impacts of such incidents. Protected information may take any form, e.g., electronic or physical, tangible, or intangible. Information security's primary focus is the balanced protection of data confidentiality, integrity, and availability while maintaining a focus on efficient policy implementation, all without hampering organization productivity. This is largely achieved through a structured risk management process.
To standardize this discipline, academics and professionals collaborate to offer guidance, policies, and industry standards on passwords, antivirus software, firewalls, encryption software, legal liability, security awareness and training, and so forth. This standardization may be further driven by a wide variety of laws and regulations that affect how data is accessed, processed, stored, transferred, and destroyed.
While paper-based business operations are still prevalent, requiring their own set of information security practices, enterprise digital initiatives are increasingly being emphasized, with information assurance now typically being dealt with by information technology security specialists. These specialists apply information security to technology.
IT security specialists are almost always found in any major enterprise/establishment due to the nature and value of the data within larger businesses. They are responsible for keeping all of the technology within the company secure from malicious attacks that often attempt to acquire critical private information or gain control of the internal systems.
There are many specialist roles in Information Security including securing networks and allied infrastructure, securing applications and databases, security testing, information systems auditing, business continuity planning, electronic record discovery, and digital forensics.
Definitions
Information security standards are techniques generally outlined in published materials that attempt to protect the information of a user or organization. This environment includes users themselves, networks, devices, all software, processes, information in storage or transit, applications, services, and systems that can be connected directly or indirectly to networks.The principal objective is to reduce the risks, including preventing or mitigating attacks. These published materials consist of tools, policies, security concepts, security safeguards, guidelines, risk management approaches, actions, training, best practices, assurance and technologies.File:CIAJMK1209-en.svg|alt=vectorial version|thumb|Information Security Attributes: or qualities, i.e., Confidentiality, Integrity and Availability. Information Systems are composed in three main portions, hardware, software and communications with the purpose to help identify and apply information security industry standards, as mechanisms of protection and prevention, at three levels or layers: physical, personal and organizational. Essentially, procedures or policies are implemented to tell administrators, users and operators how to use products to ensure information security within the organizations.
Various definitions of information security are suggested below, summarized from different sources:
- "Preservation of confidentiality, integrity and availability of information. Note: In addition, other properties, such as authenticity, accountability, non-repudiation and reliability can also be involved."
- "The protection of information and information systems from unauthorized access, use, disclosure, disruption, modification, or destruction in order to provide confidentiality, integrity, and availability."
- "Ensures that only authorized users have access to accurate and complete information when required."
- "Information Security is the process of protecting the intellectual property of an organisation."
- "...information security is a risk management discipline, whose job is to manage the cost of information risk to the business."
- "A well-informed sense of assurance that information risks and controls are in balance."
- "Information security is the protection of information and minimizes the risk of exposing information to unauthorized parties."
- "Information Security is a multidisciplinary area of study and professional activity which is concerned with the development and implementation of security mechanisms of all available types in order to keep information in all its locations and, consequently, information systems, where information is created, processed, stored, transmitted and destroyed, free from threats.
- Information and information resource security using telecommunication system or devices means protecting information, information systems or books from unauthorized access, damage, theft, or destruction.
Threats
Governments, military, corporations, financial institutions, hospitals, non-profit organizations, and private businesses amass a great deal of confidential information about their employees, customers, products, research, and financial status. Should confidential information about a business's customers or finances or new product line fall into the hands of a competitor or hacker, a business and its customers could suffer widespread, irreparable financial loss, as well as damage to the company's reputation. From a business perspective, information security must be balanced against cost; the Gordon-Loeb Model provides a mathematical economic approach for addressing this concern.
For the individual, information security has a significant effect on privacy, which is viewed very differently in various cultures.
History
Since the early days of communication, diplomats and military commanders understood that it was necessary to provide some mechanism to protect the confidentiality of correspondence and to have some means of detecting tampering. Julius Caesar is credited with the invention of the Caesar cipher c. 50 B.C., which was created in order to prevent his secret messages from being read should a message fall into the wrong hands. However, for the most part protection was achieved through the application of procedural handling controls. Sensitive information was marked up to indicate that it should be protected and transported by trusted persons, guarded and stored in a secure environment or strong box. As postal services expanded, governments created official organizations to intercept, decipher, read, and reseal letters.In the mid-nineteenth century more complex classification systems were developed to allow governments to manage their information according to the degree of sensitivity. For example, the British Government codified this, to some extent, with the publication of the Official Secrets Act in 1889. Section 1 of the law concerned espionage and unlawful disclosures of information, while Section 2 dealt with breaches of official trust. A public interest defense was soon added to defend disclosures in the interest of the state. A similar law was passed in India in 1889, The Indian Official Secrets Act, which was associated with the British colonial era and used to crack down on newspapers that opposed the Raj's policies. A newer version was passed in 1923 that extended to all matters of confidential or secret information for governance. By the time of the First World War, multi-tier classification systems were used to communicate information to and from various fronts, which encouraged greater use of code making and breaking sections in diplomatic and military headquarters. Encoding became more sophisticated between the wars as machines were employed to scramble and unscramble information.
The establishment of computer security inaugurated the history of information security. The need for such appeared during World War II. The volume of information shared by the Allied countries during the Second World War necessitated formal alignment of classification systems and procedural controls. An arcane range of markings evolved to indicate who could handle documents and where they should be stored as increasingly complex safes and storage facilities were developed. The Enigma Machine, which was employed by the Germans to encrypt the data of warfare and was successfully decrypted by Alan Turing, can be regarded as a striking example of creating and using secured information. Procedures evolved to ensure documents were destroyed properly, and it was the failure to follow these procedures which led to some of the greatest intelligence coups of the war.
Various mainframe computers were connected online during the Cold War to complete more sophisticated tasks, in a communication process easier than mailing magnetic tapes back and forth by computer centers. As such, the Advanced Research Projects Agency, of the United States Department of Defense, started researching the feasibility of a networked system of communication to trade information within the United States Armed Forces. In 1968, the ARPANET project was formulated by Larry Roberts, which would later evolve into what is known as the internet.
In 1973, important elements of ARPANET security were found by internet pioneer Robert Metcalfe to have many flaws such as the: "vulnerability of password structure and formats; lack of safety procedures for dial-up connections; and nonexistent user identification and authorizations", aside from the lack of controls and safeguards to keep data safe from unauthorized access. Hackers had effortless access to ARPANET, as phone numbers were known by the public. Due to these problems, coupled with the constant violation of computer security, as well as the exponential increase in the number of hosts and users of the system, "network security" was often alluded to as "network insecurity".
The end of the twentieth century and the early years of the twenty-first century saw rapid advancements in telecommunications, computing hardware and software, and data encryption. The availability of smaller, more powerful, and less expensive computing equipment made electronic data processing within the reach of small business and home users. The establishment of Transfer Control Protocol/Internetwork Protocol in the early 1980s enabled different types of computers to communicate. These computers quickly became interconnected through the internet.
The rapid growth and widespread use of electronic data processing and electronic business conducted through the internet, along with numerous occurrences of international terrorism, fueled the need for better methods of protecting the computers and the information they store, process, and transmit. The academic disciplines of computer security and information assurance emerged along with numerous professional organizations, all sharing the common goals of ensuring the security and reliability of information systems.