Standardization


Standardization or standardisation is the process of implementing and developing technical standards based on the consensus of different parties that include firms, users, interest groups, standards organizations and governments. Standardization can help maximize compatibility, interoperability, safety, repeatability, efficiency, and quality. It can also facilitate a normalization of formerly custom processes.
In social sciences, including economics, the idea of standardization is close to the solution for a coordination problem, a situation in which all parties can realize mutual gains, but only by making mutually consistent decisions. Divergent national standards impose costs on consumers and can be a form of non-tariff trade barrier.

Objectives

The European Union's Regulation 1025/2012 on standardisation states that "The primary objective of standardisation is the definition of voluntary technical or quality specifications with which current or future products, production processes or services may comply."

History

Early examples

Standard weights and measures were developed by the Indus Valley civilization. The centralized weight and measure system served the commercial interest of Indus merchants as smaller weight measures were used to measure luxury goods while larger weights were employed for buying bulkier items, such as food grains etc. Weights existed in multiples of a standard weight and in categories. Technical standardization enabled gauging devices to be effectively used in angular measurement and measurement for construction. Uniform units of length were used in the planning of towns such as Lothal, Surkotada, Kalibangan, Dolavira, Harappa, and Mohenjo-daro. The weights and measures of the Indus civilization also reached Persia and Central Asia, where they were further modified. Shigeo Iwata describes the excavated weights unearthed from the Indus civilization:

18th century attempts

The implementation of standards in industry and commerce became highly important with the onset of the Industrial Revolution and the need for high-precision machine tools and interchangeable parts.
Henry Maudslay developed the first industrially practical screw-cutting lathe in 1800. This allowed for the standardization of screw thread sizes for the first time and paved the way for the practical application of interchangeability to nuts and bolts.
Before this, screw threads were usually made by chipping and filing. Nuts were rare; metal screws, when made at all, were usually for use in wood. Metal bolts passing through wood framing to a metal fastening on the other side were usually fastened in non-threaded ways. Maudslay standardized the screw threads used in his workshop and produced sets of taps and dies that would make nuts and bolts consistently to those standards, so that any bolt of the appropriate size would fit any nut of the same size. This was a major advance in workshop technology. Maudslay's work, as well as the contributions of other engineers, accomplished a modest amount of industry standardization; some companies' in-house standards spread a bit within their industries.

19th century developments

's screw thread measurements were adopted as the first national standard by companies around the country in 1841. It came to be known as the British Standard Whitworth, and was widely adopted in other countries.
This new standard specified a 55° thread angle and a thread depth of 0.640327p and a radius of 0.137329p, where p is the pitch. The thread pitch increased with diameter in steps specified on a chart. An example of the use of the Whitworth thread is the Royal Navy's Crimean War gunboats. These were the first instance of "mass-production" techniques being applied to marine engineering.
With the adoption of BSW by British railway lines, many of which had previously used their own standard both for threads and for bolt head and nut profiles, and improving manufacturing techniques, it came to dominate British manufacturing.
American Unified Coarse was originally based on almost the same imperial fractions. The Unified thread angle is 60° and has flattened crests. Thread pitch is the same in both systems except that the thread pitch for the in. bolt is 12 threads per inch in BSW versus 13 tpi in the UNC.
The first modern International Organization, the International Telegraph Union, was created in 1865 to set international standards in order to connect national telegraph networks, as a merger of two predecessor organizations that had similar objectives, but in more limited territories. With the advent of radiocommunication soon after its creation, the work of the ITU quickly expanded from the standardization of telegraph communications to the development of standards for telecommunications in general.
By the end of the 19th century, differences in standards between companies were making trade increasingly difficult and strained. For instance, an iron and steel dealer recorded his displeasure in The Times: "Architects and engineers generally specify such unnecessarily diverse types of sectional material or given work that anything like economical and continuous manufacture becomes impossible. In this country no two professional men are agreed upon the size and weight of a girder to employ for given work."

Early 20th century

The Engineering Standards Committee was established in London in 1901 as the world's first national standards body. It subsequently extended its standardization work and became the British Engineering Standards Association in 1918, adopting the name British Standards Institution in 1931 after receiving its Royal Charter in 1929. The national standards were adopted universally throughout the country, and enabled the markets to act more rationally and efficiently, with an increased level of cooperation.
After the First World War, similar national bodies were established in other countries. The Deutsches Institut für Normung was set up in Germany in 1917, followed by its counterparts, the American National Standard Institute and the French Commission Permanente de Standardisation, both in 1918.

International structure of standardization

Regional standards organization

At a regional level or at subregional level, several Regional Standardization Organizations exist.
There are three regional standards organizations in Europe, which are known as European Standardization Organizations, or European standards bodies. CEN, CENELEC, and ETSI are recognized via the EU's Regulation on Standardization. CEN develops standards for numerous kinds of products, materials, services and processes. Some sectors covered by CEN include transport equipment and services, chemicals, construction, consumer products, defence and security, energy, food and feed, health and safety, healthcare, digital sector, machinery or services. The European Committee for Electrotechnical Standardization is the European Standardization organization developing standards in the electrotechnical area and corresponding to the International Electrotechnical Commission in Europe.

International standards

International Standards Associations

By the mid to late 19th century, efforts were being made to standardize electrical measurement. Lord Kelvin was an important figure in this process, introducing accurate methods and apparatus for measuring electricity. In 1857, he introduced a series of effective instruments, including the quadrant electrometer, which cover the entire field of electrostatic measurement. He invented the current balance, also known as the Kelvin balance or Ampere balance, for the precise specification of the ampere, the standard unit of electric current.
R. E. B. Crompton became concerned by the large range of different standards and systems used by electrical engineering companies and scientists in the early 20th century. Many companies had entered the market in the 1890s and all chose their own settings for voltage, frequency, current and even the symbols used on circuit diagrams. Adjacent buildings would have totally incompatible electrical systems simply because they had been fitted out by different companies. Crompton could see the lack of efficiency in this system and began to consider proposals for an international standard for electric engineering.
In 1904, Crompton represented Britain at the International Electrical Congress, held in connection with Louisiana Purchase Exposition in Saint Louis as part of a delegation by the Institute of Electrical Engineers. He presented a paper on standardization, which was so well received that he was asked to look into the formation of a commission to oversee the process. By 1906 his work was complete and he drew up a permanent constitution for the International Electrotechnical Commission. The body held its first meeting that year in London, with representatives from 14 countries. In honour of his contribution to electrical standardization, Lord Kelvin was elected as the body's first President.
The International Federation of the National Standardizing Associations was founded in 1926 with a broader remit to enhance international cooperation for all technical standards and specifications. The body was suspended in 1942 during World War II.
After the war, ISA was approached by the recently formed United Nations Standards Coordinating Committee with a proposal to form a new global standards body. In October 1946, ISA and UNSCC delegates from 25 countries met in London and agreed to join forces to create the new International Organization for Standardization ; the new organization officially began operations in February 1947.
In general, each country or economy has a single recognized National Standards Body. Examples include ABNT, AENOR, AFNOR, ANSI, BSI, DGN, DIN, IRAM, JISC, KATS, SABS, SAC, SCC, SIS. An NSB is likely the sole member from that economy in ISO.
NSBs may be either public or private sector organizations, or combinations of the two. For example, the three NSBs of Canada, Mexico and the United States are respectively the Standards Council of Canada, the General Bureau of Standards, and the American National Standards Institute. SCC is a Canadian Crown Corporation, DGN is a governmental agency within the Mexican Ministry of Economy, and ANSI and AENOR are a 501 non-profit organization with members from both the private and public sectors. The determinants of whether an NSB for a particular economy is a public or private sector body may include the historical and traditional roles that the private sector fills in public affairs in that economy or the development stage of that economy.