Niels Bohr
Niels Henrik David Bohr was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922. He was also a philosopher and a promoter of scientific research.
Bohr developed the Bohr model of the atom, in which he proposed that energy levels of electrons are discrete and that the electrons revolve in stable orbits around the atomic nucleus but can jump from one energy level to another. Although the Bohr model has been supplanted by other models, its underlying principles remain valid. He conceived the principle of complementarity: that items could be separately analysed in terms of contradictory properties, like behaving as a wave or a stream of particles. The notion of complementarity dominated Bohr's thinking in both science and philosophy.
Bohr founded the Institute of Theoretical Physics at the University of Copenhagen, now known as the Niels Bohr Institute, which opened in 1920. Bohr mentored and collaborated with physicists including Hans Kramers, Oskar Klein, George de Hevesy, and Werner Heisenberg. He predicted the properties of a new zirconium-like element, which was named hafnium, after the Latin name for Copenhagen, where it was discovered. Later, the synthetic element bohrium was named after him because of his groundbreaking work on the structure of atoms.
During the 1930s, Bohr helped refugees from Nazism. After Denmark was occupied by the Germans, he met with Heisenberg, who had become the head of the German nuclear weapon project. In September 1943 word reached Bohr that he was about to be arrested by the Germans, so he fled to Sweden. From there, he was flown to Britain, where he joined the British Tube Alloys nuclear weapons project, and was part of the British mission to the Manhattan Project. After the war, Bohr called for international cooperation on nuclear energy. He was involved with the establishment of CERN and the Research Establishment Risø of the Danish Atomic Energy Commission and became the first chairman of the Nordic Institute for Theoretical Physics in 1957. In 1999, he was named the fourth greatest physicist of all time.
Early life and education
Niels Henrik David Bohr was born on 7 October 1885 in Copenhagen, Denmark, the second of three children of Christian Bohr, Professor of Physiology at the University of Copenhagen, and Ellen Adler, the daughter of Danish Jewish banker David Baruch Adler. He had an elder sister, Jenny, and a younger brother Harald. Jenny became a teacher, while Harald became a mathematician and footballer who played for the Danish national team at the 1908 Summer Olympics in London. Niels was a passionate footballer as well, and the two brothers played several matches for the Copenhagen-based Akademisk Boldklub, with Niels as goalkeeper.Bohr was educated at Gammelholm Latin School, starting when he was seven. In 1903, Bohr enrolled as an undergraduate at the University of Copenhagen. His major was physics, which he studied under Christian Christiansen, the university's only professor of physics at that time. He also studied astronomy and mathematics under Thorvald Thiele, and philosophy under Harald Høffding, a friend of his father.
In 1905, a gold medal competition was sponsored by the Royal Danish Academy of Sciences and Letters to investigate a method for measuring the surface tension of liquids that had been proposed by Lord Rayleigh in 1879. This involved measuring the frequency of oscillation of the radius of a water jet. Bohr conducted a series of experiments using his father's laboratory in the university; the university itself had no physics laboratory. To complete his experiments, he had to make his own glassware, creating test tubes with the required elliptical cross-sections. He went beyond the original task, incorporating improvements into both Rayleigh's theory and his method, by taking into account the viscosity of the water, and by working with finite amplitudes instead of just infinitesimal ones. His essay, which he submitted at the last minute, won the prize. He later submitted an improved version of the paper to the Royal Society in London for publication in the Philosophical Transactions of the Royal Society.
Harald became the first of the two Bohr brothers to earn a master's degree, which he earned for mathematics in April 1909. Niels took another 9 months to earn his for the electron theory of metals, a topic assigned by his supervisor, Christiansen. Bohr subsequently elaborated his master's thesis into his much-larger Ph.D. thesis. He surveyed the literature on the subject, settling on a model developed by Paul Drude and elaborated by Hendrik Lorentz, in which the electrons in a metal are considered to behave like a gas. Bohr extended Lorentz's model, but was still unable to account for phenomena like the Hall effect, and concluded that electron theory could not fully explain the magnetic properties of metals. The thesis was accepted in April 1911, and Bohr conducted his formal defence on 13 May. Harald had received his doctorate the previous year. Bohr's thesis was groundbreaking, but attracted little interest outside Scandinavia because it was written in Danish, a Copenhagen University requirement at the time. In 1921, the Dutch physicist Hendrika Johanna van Leeuwen would independently derive a theorem in Bohr's thesis that is today known as the Bohr–Van Leeuwen theorem.
Physics
Bohr model
In September 1911, Bohr, supported by a fellowship from the Carlsberg Foundation, travelled to England, where most of the theoretical work on the structure of atoms and molecules was being done. He met J. J. Thomson of the Cavendish Laboratory and Trinity College, Cambridge. He attended lectures on electromagnetism given by James Jeans and Joseph Larmor, and did some research on cathode rays, but failed to impress Thomson. He had more success with younger physicists like the Australian William Lawrence Bragg, and New Zealand's Ernest Rutherford, whose 1911 small central nucleus Rutherford model of the atom had challenged Thomson's 1904 plum pudding model. Bohr received an invitation from Rutherford to conduct post-doctoral work at Victoria University of Manchester, where Bohr met George de Hevesy and Charles Galton Darwin.Bohr returned to Denmark in July 1912 for his wedding, and travelled around England and Scotland on his honeymoon. On his return, he became a Privatdocent at the University of Copenhagen, giving lectures on thermodynamics. Martin Knudsen put Bohr's name forward for a docent, which was approved in July 1913, and Bohr then began teaching medical students. His three papers, which later became famous as "the trilogy", were published in Philosophical Magazine in July, September and November of that year. He adapted Rutherford's nuclear structure to Max Planck's quantum theory and so created his Bohr model of the atom.
Planetary models of atoms were not new, but Bohr's treatment was. Taking the 1912 paper by Darwin on the role of electrons in the interaction of alpha particles with a nucleus as his starting point, he advanced the theory of electrons travelling in orbits of quantised "stationary states" around the atom's nucleus in order to stabilise the atom, but it wasn't until his 1921 paper that he showed that the chemical properties of each element were largely determined by the number of electrons in the outer orbits of its atoms. He introduced the idea that an electron could drop from a higher-energy orbit to a lower one, in the process emitting a quantum of discrete energy. This became a basis for what is now known as the old quantum theory.
File:Bohr-atom-PAR.svg|thumb|right|The Bohr model of the hydrogen atom. A negatively charged electron, confined to an atomic orbital, orbits a small, positively charged nucleus; a quantum jump between orbits is accompanied by an emitted or absorbed amount of electromagnetic radiation.|alt=Diagram showing electrons with circular orbits around the nucleus labelled n=1, 2 and 3. An electron drops from 3 to 2, producing radiation delta E = hv
File:Evolution of atomic models infographic.svg|thumb|right|The evolution of atomic models in the 20th century: Thomson, Rutherford, Bohr, Heisenberg/Schrödinger
In 1885, Johann Balmer had come up with his Balmer series to describe the visible spectral lines of a hydrogen atom:
where λ is the wavelength of the absorbed or emitted light and RH is the Rydberg constant. Balmer's formula was corroborated by the discovery of additional spectral lines, but for thirty years, no one could explain why it worked. In the first paper of his trilogy, Bohr was able to derive it from his model:
where me is the electron's mass, e is its charge, h is the Planck constant and Z is the atom's atomic number.
The model's first hurdle was the Pickering series, lines that did not fit Balmer's formula. When challenged on this by Alfred Fowler, Bohr replied that they were caused by ionised helium, helium atoms with only one electron. The Bohr model was found to work for such ions. Many older physicists, like Thomson, Rayleigh and Hendrik Lorentz, did not like the trilogy, but the younger generation, including Rutherford, David Hilbert, Albert Einstein, Enrico Fermi, Max Born and Arnold Sommerfeld saw it as a breakthrough. Einstein called Bohr's model "the highest form of musicality in the sphere of thought." The trilogy's acceptance was entirely due to its ability to explain phenomena that stymied other models, and to predict results that were subsequently verified by experiments. Today, the Bohr model of the atom has been superseded, but is still the best known model of the atom, as it often appears in high school physics and chemistry texts.
Bohr did not enjoy teaching medical students. He later admitted that he was not a good lecturer, because he needed a balance between clarity and truth, between "Klarheit und Wahrheit". He decided to return to Manchester, where Rutherford had offered him a job as a reader in place of Darwin, whose tenure had expired. Bohr accepted. He took a leave of absence from the University of Copenhagen, which he started by taking a holiday in Tyrol with his brother Harald and aunt Hanna Adler. There, he visited the University of Göttingen and the Ludwig Maximilian University of Munich, where he met Sommerfeld and conducted seminars on the trilogy. The First World War broke out while they were in Tyrol, greatly complicating the trip back to Denmark and Bohr's subsequent voyage with Margrethe to England, where he arrived in October 1914. They stayed until July 1916, by which time he had been appointed to the Chair of Theoretical Physics at the University of Copenhagen, a position created especially for him. His docentship was abolished at the same time, so he still had to teach physics to medical students. New professors were formally introduced to King Christian X, who expressed his delight at meeting such a famous football player.