Otto Hahn


Otto Hahn was a German chemist who was a pioneer in the field of radiochemistry. He is referred to as the father of nuclear chemistry and discoverer of nuclear fission, the science behind nuclear reactors and nuclear weapons. Hahn and Lise Meitner discovered isotopes of the radioactive elements radium, thorium, protactinium and uranium. He also discovered the phenomena of atomic recoil and nuclear isomerism, and pioneered rubidium–strontium dating. In 1938, Hahn, Meitner and Fritz Strassmann discovered nuclear fission, for which Hahn alone was awarded the 1944 Nobel Prize in Chemistry.
A graduate of the University of Marburg, which awarded him a doctorate in 1901, Hahn studied under Sir William Ramsay at University College London and at McGill University in Montreal, Canada, under Ernest Rutherford, where he discovered several new radioactive isotopes. He returned to Germany in 1906; Emil Fischer let him use a former woodworking shop in the basement of the Chemical Institute at the University of Berlin as a laboratory. Hahn completed his habilitation in early 1907 and became a Privatdozent. In 1912, he became head of the Radioactivity Department of the newly founded Kaiser Wilhelm Institute for Chemistry. Working with Austrian physicist Lise Meitner in the building that now bears their names, they made a series of groundbreaking discoveries, culminating with her isolation of the longest-lived isotope of protactinium in 1918.
During World War I Hahn served with a Landwehr regiment on the Western Front, and with the chemical warfare unit headed by Fritz Haber on the Western, Eastern and Italian fronts, earning the Iron Cross for his part in the First Battle of Ypres. After the war he became the head of the KWIC, while remaining in charge of his own department. Between 1934 and 1938, he worked with Strassmann and Meitner on the study of isotopes created by neutron bombardment of uranium and thorium, which led to the discovery of nuclear fission. He was an opponent of Nazism and the persecution of Jews by the Nazi Party that caused the removal of many of his colleagues, including Meitner, who was forced to flee Germany in 1938. Nonetheless, during World War II, he worked on the German nuclear weapons program, cataloguing the fission products of uranium. At the end of the war he was arrested by the Allied forces and detained in Farm Hall with nine other German scientists, from July 1945 to January 1946.
Hahn served as the last president of the Kaiser Wilhelm Society for the Advancement of Science in 1946 and as the founding president of its successor, the Max Planck Society from 1948 to 1960. In 1959, he co-founded the Federation of German Scientists, a non-governmental organisation committed to the ideal of responsible science. As he worked to rebuild German science, he became one of the most influential and respected citizens of post-war West Germany.

Early life and education

Otto Hahn was born in Frankfurt am Main on 8 March 1879, the youngest son of Heinrich Hahn, a prosperous glazier and founder of the Glasbau Hahn company, and Charlotte Hahn. He had an older half-brother Karl, his mother's son from her previous marriage, and two older brothers, Heiner and Julius. The family lived above his father's workshop. The younger three boys were educated at the Klinger Oberrealschule in Frankfurt. At the age of 15, Otto began to take a special interest in chemistry, and carried out simple experiments in the laundry room of the family home. His father wanted him to study architecture, as he had built or acquired several residential and business properties, but Otto persuaded him that his ambition was to become an industrial chemist.
In 1897, after passing his Abitur, Hahn began to study chemistry at the University of Marburg. His subsidiary subjects were mathematics, physics, mineralogy and philosophy. Hahn joined the Students' Association of Natural Sciences and Medicine, a student fraternity and a forerunner of today's Landsmannschaft Nibelungi. He spent his third and fourth semesters at the University of Munich, studying organic chemistry under Adolf von Baeyer, physical chemistry under, and inorganic chemistry under Karl Andreas Hofmann. In 1901, Hahn received his doctorate in Marburg for a dissertation entitled "On Bromine Derivates of Isoeugenol", a topic in classical organic chemistry. He completed his one-year military service in the 81st Infantry Regiment, but unlike his brothers, did not apply for a commission. He then returned to the University of Marburg, where he worked for two years as assistant to his doctoral supervisor, Geheimrat professor Theodor Zincke.

Early career in London and Canada

Discovery of radiothorium and other "new elements"

Hahn's intention was still to work in industry. He received an offer of employment from Eugen Fischer, the director of , but a condition of employment was that Hahn had to have lived in another country and have a reasonable command of another language. With this in mind, and to improve his knowledge of English, Hahn took up a post at University College London in 1904, working under Sir William Ramsay, who was known for having discovered the noble gases. Here Hahn worked on radiochemistry, at that time a very new field. In early 1905, in the course of his work with salts of radium, Hahn discovered a new substance he called radiothorium, which at that time was believed to be a new radioactive element. In fact, it was an isotope of the known element thorium; the concept of an isotope, along with the term, was coined in 1913 by the British chemist Frederick Soddy.
Ramsay was enthusiastic when yet another new element was found in his institute, and he intended to announce the discovery in a correspondingly suitable way. In accordance with tradition this was done before the committee of the venerable Royal Society. At the session of the Royal Society on 16 March 1905 Ramsay communicated Hahn's discovery of radiothorium. The Daily Telegraph informed its readers:
Hahn published his results in the Proceedings of the Royal Society on 24 May 1905. It was the first of more than 250 scientific publications in the field of radiochemistry. At the end of his time in London, Ramsay asked Hahn about his plans for the future, and Hahn told him about the job offer from Kalle & Co. Ramsay told him radiochemistry had a bright future, and that someone who had discovered a new radioactive element should go to the University of Berlin. Ramsay wrote to Emil Fischer, the head of the chemistry institute there, who replied that Hahn could work in his laboratory, but could not be a Privatdozent because radiochemistry was not taught there. At this point, Hahn decided that he first needed to know more about the subject, so he wrote to the leading expert on the field, Ernest Rutherford. Rutherford agreed to take Hahn on as an assistant, and Hahn's parents undertook to pay Hahn's expenses.
From September 1905 until mid-1906, Hahn worked with Rutherford's group in the basement of the Macdonald Physics Building at McGill University in Montreal. There was some scepticism about the existence of radiothorium, which Bertram Boltwood memorably described as a compound of thorium X and stupidity. Boltwood was soon convinced that it did exist, although he and Hahn differed on what its half-life was. William Henry Bragg and Richard Kleeman had noted that the alpha particles emitted from radioactive substances always had the same energy, providing a second way of identifying them, so Hahn set about measuring the alpha particle emissions of radiothorium. In the process, he found that a precipitation of thorium A and thorium B also contained a short-lived "element", which he named thorium C. Hahn was unable to separate it, and concluded that it had a very short half-life. He also identified radioactinium and radium D. Rutherford remarked that: "Hahn has a special nose for discovering new elements."

Chemical Institute in Berlin

Discovery of mesothorium I

In 1906, Hahn returned to Germany, where Fischer placed at his disposal a former woodworking shop in the basement of the Chemical Institute to use as a laboratory. Hahn equipped it with electroscopes to measure alpha and beta particles and gamma rays. In Montreal these had been made from discarded coffee tins; Hahn made the ones in Berlin from brass, with aluminium strips insulated with amber. These were charged with hard rubber sticks that he rubbed against the sleeves of his suit. It was not possible to conduct research in the wood shop, but Alfred Stock, the head of the inorganic chemistry department, let Hahn use a space in one of his two private laboratories. Hahn purchased two milligrams of radium from Friedrich Oskar Giesel, the discoverer of emanium, for 100 marks a milligram, and obtained thorium for free from Otto Knöfler, whose Berlin firm was a major producer of thorium products.
In the space of a few months Hahn discovered mesothorium I, mesothorium II, andindependently from Boltwoodthe mother substance of radium, ionium. In subsequent years, mesothorium I assumed great importance because, like radium-226, it was ideally suited for use in medical radiation treatment, but cost only half as much to manufacture. Along the way, Hahn determined that just as he was unable to separate thorium from radiothorium, so he could not separate mesothorium I from radium.
In Canada there had been no requirement to be circumspect when addressing the egalitarian New Zealander Rutherford, but many people in Germany found his manner off-putting, and characterised him as an "Anglicised Berliner". Hahn completed his habilitation in early 1907, and became a Privatdozent. A thesis was not required; the Chemical Institute accepted one of his publications on radioactivity instead. Most of the organic chemists at the Chemical Institute did not regard Hahn's work as real chemistry. Fischer objected to Hahn's contention in his habilitation colloquium that many radioactive substances existed in such tiny amounts that they could only be detected by their radioactivity, venturing that he had always been able to detect substances with his keen sense of smell, but soon gave in. One department head remarked: "it is incredible what one gets to be a Privatdozent these days!"
File:Berliner Physiker u Chemiker 1920.jpg|thumb|right|Physicists and chemists in Berlin in 1920. Front row, left to right: Hertha Sponer, Albert Einstein, Ingrid Franck, James Franck, Lise Meitner, Fritz Haber, and Otto Hahn. Back row, left to right: Walter Grotrian, Wilhelm Westphal,
, and Gustav Hertz
Physicists were more accepting of Hahn's work, and he began attending a colloquium at the Physics Institute conducted by Heinrich Rubens. It was at one of these colloquia where, on 28 September 1907, he made the acquaintance of the Austrian physicist Lise Meitner. Almost the same age as himself, she was only the second woman to receive a doctorate from the University of Vienna, and had already published two papers on radioactivity. Rubens suggested her as a possible collaborator. So began the thirty-year collaboration and lifelong close friendship between the two scientists.
In Montreal, Hahn had worked with physicists including at least one woman, Harriet Brooks, but it was difficult for Meitner at first. Women were not yet admitted to universities in Prussia. Meitner was allowed to work in the wood shop, which had its own external entrance, but could not enter the rest of the institute, including Hahn's laboratory space upstairs. If she wanted to go to the toilet, she had to use one at the restaurant down the street. The following year, women were admitted to universities, and Fischer lifted the restrictions and had women's toilets installed in the building.