Wearable computer
A wearable computer, also known as a body-borne computer or wearable, is a computing device worn on the body. The definition of 'wearable computer' may be narrow or broad, extending to smartphones or even ordinary wristwatches.
Wearables may be for general use, in which case they are just a particularly small example of mobile computing. Alternatively, they may be for specialized purposes such as fitness trackers. They may incorporate special sensors such as accelerometers, heart rate monitors, or on the more advanced side, electrocardiogram and blood oxygen saturation monitors. Under the definition of wearable computers, we also include novel user interfaces such as Google Glass, an optical head-mounted display controlled by gestures. It may be that specialized wearables will evolve into general all-in-one devices, as happened with the convergence of PDAs and mobile phones into smartphones.
Wearables are typically worn on the wrist, hung from the neck, strapped to the arm or leg, or on the head, though some have been located elsewhere. Devices carried in a pocket or bag – such as smartphones and before them, pocket calculators and PDAs, may or may not be regarded as 'worn'.
Wearable computers have various technical issues common to other mobile computing, such as batteries, heat dissipation, software architectures, wireless and personal area networks, and data management. Many wearable computers are active all the time, e.g. processing or recording data continuously.
Applications
Wearable computers are not only limited to computers such as fitness trackers that are worn on wrists; they also include wearables such as heart pacemakers and other prosthetics. They are used most often in research that focuses on behavioral modeling, health monitoring systems, IT and media development, where the person wearing the computer actually moves or is otherwise engaged with his or her surroundings. Wearable computers have been used for the following:- general-purpose computing
- sensory integration, e.g. to help people see better or understand the world better
- behavioral modeling
- health care monitoring systems
- service management
- electronic textiles and fashion design, e.g. Microsoft's 2011 prototype "The Printing Dress".
Operating systems
The dominant operating systems for wearable computing are:- FreeRTOS is a real-time operating system kernel for embedded devices; most of the Smartbands that are currently available in the market are based on FreeRTOS, which include Huawei, Honor, Lenovo, realme, TCL and Xiaomi smartbands.
- LiteOS is a lightweight open source real-time operating system that is part of Huawei's "1+2+1" Internet of Things solution.
- Tizen OS from Samsung
- watchOS watchOS is a proprietary mobile operating system developed by Apple Inc. to run on the Apple Watch.
- Wear OS Wear OS is a smartwatch operating system developed by Google Inc.
History
However, a general-purpose computer is not merely a time-keeping or calculating device, but rather a user-programmable item for arbitrary complex algorithms, interfacing, and data management. By this definition, the wearable computer was invented by Steve Mann, in the late 1970s:
The development of wearable items has taken several steps of miniaturization from discrete electronics over hybrid designs to fully integrated designs, where just one processor chip, a battery, and some interface conditioning items make the whole unit.
1500s
of England received a watch from Robert Dudley in 1571, as a New Year's present; it may have been worn on the forearm rather than the wrist. She also possessed a 'finger-watch' set in a ring, with an alarm that prodded her finger.1600s
The Qing dynasty saw the introduction of a fully functional abacus on a ring, which could be used while it was being worn.1960s
In 1961, mathematicians Edward O. Thorp and Claude Shannon built some computerized timing devices to help them win a game of roulette. One such timer was concealed in a shoe and another in a pack of cigarettes. Various versions of this apparatus were built in the 1960s and 1970s.Thorp refers to himself as the inventor of the first "wearable computer". In other variations, the system was a concealed cigarette-pack-sized analog computer designed to predict the motion of roulette wheels. A data-taker would use microswitches hidden in his shoes to indicate the speed of the roulette wheel, and the computer would indicate an octant of the roulette wheel to bet on by sending musical tones via radio to a miniature speaker hidden in a collaborator's ear canal. The system was successfully tested in Las Vegas in June 1961, but hardware issues with the speaker wires prevented it from being used beyond test runs. This was not a wearable computer because it could not be re-purposed during use; rather it was an example of task-specific hardware. This work was kept secret until it was first mentioned in Thorp's book Beat the Dealer in 1966 and later published in detail in 1969.
1970s
s became mass-market devices in 1970, starting in Japan. Programmable calculators followed in the late 1970s, being somewhat more general-purpose computers. The HP-01 algebraic calculator watch by Hewlett-Packard was released in 1977.A camera-to-tactile vest for the blind, launched by C.C. Collins in 1977, converted images into a 1024-point, ten-inch square tactile grid on a vest.
1980s
The 1980s saw the rise of more general-purpose wearable computers. In 1981, Steve Mann designed and built a backpack-mounted 6502-based wearable multimedia computer with text, graphics, and multimedia capability, as well as video capability. Mann went on to be an early and active researcher in the wearables field, especially known for his 1994 creation of the Wearable Wireless Webcam, the first example of lifelogging.Seiko Epson released the RC-20 Wrist Computer in 1984. It was an early smartwatch, powered by a computer on a chip.
In 1989, Reflection Technology marketed the Private Eye head-mounted display, which scans a vertical array of LEDs across the visual field using a vibrating mirror. This display gave rise to several hobbyist and research wearables, including Gerald "Chip" Maguire's IBM/Columbia University Student Electronic Notebook, Doug Platt's Hip-PC, and Carnegie Mellon University's VuMan 1 in 1991.
The Student Electronic Notebook consisted of the Private Eye, Toshiba diskless AIX notebook computers, a stylus based input system and a virtual keyboard. It used direct-sequence spread spectrum radio links to provide all the usual TCP/IP based services, including NFS mounted file systems and X11, which all ran in the Andrew Project environment.
The Hip-PC included an Agenda palmtop used as a chording keyboard attached to the belt and a 1.44 megabyte floppy drive. Later versions incorporated additional equipment from Park Engineering. The system debuted at "The Lap and Palmtop Expo" on 16 April 1991.
VuMan 1 was developed as part of a Summer-term course at Carnegie Mellon's Engineering Design Research Center, and was intended for viewing house blueprints. Input was through a three-button unit worn on the belt, and output was through Reflection Tech's Private Eye. The CPU was an 8 MHz 80188 processor with 0.5 MB ROM.
1990s
In the 1990s PDAs became widely used, and in 1999 were combined with mobile phones in Japan to produce the first mass-market smartphone.In 1993, the Private Eye was used in Thad Starner's wearable, based on Doug Platt's system and built from a kit from Park Enterprises, a Private Eye display on loan from Devon Sean McCullough, and the Twiddler chording keyboard made by Handykey. Many iterations later this system became the MIT "Tin Lizzy" wearable computer design, and Starner went on to become one of the founders of MIT's wearable computing project. 1993 also saw Columbia University's augmented-reality system known as KARMA. Users would wear a Private Eye display over one eye, giving an overlay effect when the real world was viewed with both eyes open. KARMA would overlay wireframe schematics and maintenance instructions on top of whatever was being repaired. For example, graphical wireframes on top of a laser printer would explain how to change the paper tray. The system used sensors attached to objects in the physical world to determine their locations, and the entire system ran tethered from a desktop computer.
In 1994, Edgar Matias and Mike Ruicci of the University of Toronto, debuted a "wrist computer." Their system presented an alternative approach to the emerging head-up display plus chord keyboard wearable. The system was built from a modified HP 95LX palmtop computer and a Half-QWERTY one-handed keyboard. With the keyboard and display modules strapped to the operator's forearms, text could be entered by bringing the wrists together and typing. The same technology was used by IBM researchers to create the half-keyboard "belt computer. Also in 1994, Mik Lamming and Mike Flynn at Xerox EuroPARC demonstrated the Forget-Me-Not, a wearable device that would record interactions with people and devices and store this information in a database for later query. It interacted via wireless transmitters in rooms and with equipment in the area to remember who was there, who was being talked to on the telephone, and what objects were in the room, allowing queries like "Who came by my office while I was on the phone to Mark?". As with the Toronto system, Forget-Me-Not was not based on a head-mounted display.
Also in 1994, DARPA started the Smart Modules Program to develop a modular, humionic approach to wearable and carryable computers, with the goal of producing a variety of products including computers, radios, navigation systems and human-computer interfaces that have both military and commercial use. In July 1996, DARPA went on to host the "Wearables in 2005" workshop, bringing together industrial, university, and military visionaries to work on the common theme of delivering computing to the individual. A follow-up conference was hosted by Boeing in August 1996, where plans were finalized to create a new academic conference on wearable computing. In October 1997, Carnegie Mellon University, MIT, and Georgia Tech co-hosted the IEEE International Symposium on Wearables Computers in Cambridge, Massachusetts. The symposium was a full academic conference with published proceedings and papers ranging from sensors and new hardware to new applications for wearable computers, with 382 people registered for the event. In 1998, the Microelectronic and Computer Technology Corporation created the Wearable Electronics consortial program for industrial companies in the U.S. to rapidly develop wearable computers. The program preceded the MCC Heterogeneous Component Integration Study, an investigation of the technology, infrastructure, and business challenges surrounding the continued development and integration of micro-electro-mechanical systems with other system components.
In 1998, Steve Mann invented and built the world's first smartwatch. It was featured on the cover of Linux Journal in 2000, and demonstrated at ISSCC 2000.