Rain


Rain is a form of precipitation where water droplets that have condensed from atmospheric water vapor fall by gravity. Rain is a major component of the water cycle and is responsible for depositing most of the fresh water on the Earth. It provides water for hydroelectric power plants, crop irrigation, and suitable conditions for many types of ecosystems.
The major cause of rain production is moisture moving along three-dimensional zones of temperature and moisture contrasts known as weather fronts. If enough moisture and upward motion is present, precipitation falls from convective clouds such as cumulonimbus which can organize into narrow rainbands. In mountainous areas, heavy precipitation is possible where upslope flow is maximized within windward sides of the terrain at elevation which forces moist air to condense and fall out as rainfall along the sides of mountains. On the leeward side of mountains, desert climates can exist due to the dry air caused by downslope flow which causes heating and drying of the air mass. The movement of the monsoon trough, or Intertropical Convergence Zone, brings rainy seasons to savannah climes.
The urban heat island effect leads to increased rainfall, both in amounts and intensity, downwind of cities. Global warming is also causing changes in the precipitation pattern, including wetter conditions across eastern North America and drier conditions in the tropics. Antarctica is the driest continent. The globally averaged annual precipitation over land is, but over the whole Earth, it is much higher at. Climate classification systems such as the Köppen classification system use average annual rainfall to help differentiate between differing climate regimes. Rainfall is measured using rain gauges. Rainfall amounts can be estimated by weather radar.

Formation

Water-saturated air

Air contains water vapor, and the amount of water in a given mass of dry air, known as the mixing ratio, is measured in grams of water per kilogram of dry air. The amount of moisture in the air is also commonly reported as relative humidity; which is the percentage of the total water vapor air can hold at a particular air temperature. How much water vapor a parcel of air can contain before it becomes saturated and forms into a cloud depends on its temperature. Warmer air can contain more water vapor than cooler air before becoming saturated. Therefore, one way to saturate a parcel of air is to cool it. The dew point is the temperature to which a parcel must be cooled in order to become saturated.
There are four main mechanisms for cooling the air to its dew point: adiabatic cooling, conductive cooling, radiational cooling, and evaporative cooling. Adiabatic cooling occurs when air rises and expands. The air can rise due to convection, large-scale atmospheric motions, or a physical barrier such as a mountain. Conductive cooling occurs when the air comes into contact with a colder surface, usually by being blown from one surface to another, for example from a liquid water surface to colder land. Radiational cooling occurs due to the emission of infrared radiation, either by the air or by the surface underneath. Evaporative cooling occurs when moisture is added to the air through evaporation, which forces the air temperature to cool to its wet-bulb temperature, or until it reaches saturation.
The main ways water vapor is added to the air are wind convergence into areas of upward motion, precipitation or virga falling from above, daytime heating evaporating water from the surface of oceans, water bodies or wet land, transpiration from plants, cool or dry air moving over warmer water, and lifting air over mountains. Water vapor normally begins to condense on condensation nuclei such as dust, ice, and salt in order to form clouds. Elevated portions of weather fronts force broad areas of upward motion within the Earth's atmosphere which form clouds decks such as altostratus or cirrostratus. Stratus is a stable cloud deck which tends to form when a cool, stable air mass is trapped underneath a warm air mass. It can also form due to the lifting of advection fog during breezy conditions.

Coalescence and fragmentation

occurs when water droplets fuse to create larger water droplets. Air resistance typically causes the water droplets in a cloud to remain stationary. When air turbulence occurs, water droplets collide, producing larger droplets.
As these larger water droplets descend, coalescence continues, so that drops become heavy enough to overcome air resistance and fall as rain. Coalescence generally happens most often in clouds above freezing and is also known as the warm rain process. In clouds below freezing, when ice crystals gain enough mass they begin to fall. This generally requires more mass than coalescence when occurring between the crystal and neighboring water droplets. This process is temperature dependent, as supercooled water droplets only exist in a cloud that is below freezing. In addition, because of the great temperature difference between cloud and ground level, these ice crystals may melt as they fall and become rain.
Raindrops have sizes ranging from mean diameter but develop a tendency to break up at larger sizes. Smaller drops are called cloud droplets, and their shape is spherical. As a raindrop increases in size, its shape becomes more oblate, with its largest cross-section facing the oncoming airflow. Large rain drops become increasingly flattened on the bottom, like hamburger buns; very large ones are shaped like parachutes. Contrary to popular belief, their shape does not resemble a teardrop. The biggest raindrops on Earth were recorded over Brazil and the Marshall Islands in 2004 — some of them were as large as. The large size is explained by condensation on large smoke particles or by collisions between drops in small regions with particularly high content of liquid water.
Raindrops associated with melting hail tend to be larger than other raindrops.
Intensity and duration of rainfall are usually inversely related, i.e., high-intensity storms are likely to be of short duration and low-intensity storms can have a long duration.

Droplet size distribution

The final droplet size distribution is an exponential distribution. The number of droplets with diameter between and per unit volume of space is. This is commonly referred to as the Marshall–Palmer law after the researchers who first characterized it. The parameters are somewhat temperature-dependent, and the slope also scales with the rate of rainfall .
Deviations can occur for small droplets and during different rainfall conditions. The distribution tends to fit averaged rainfall, while instantaneous size spectra often deviate and have been modeled as gamma distributions. The distribution has an upper limit due to droplet fragmentation.

Raindrop impacts

Raindrops impact at their terminal velocity, which is greater for larger drops due to their larger mass-to-drag ratio. At sea level and without wind, drizzle impacts at or, while large drops impact at around or.
Rain falling on loosely packed material such as newly fallen ash can produce dimples that can be fossilized, called raindrop impressions. The air density dependence of the maximum raindrop diameter together with fossil raindrop imprints has been used to constrain the density of the air 2.7 billion years ago. The sound of raindrops hitting water is caused by bubbles of air oscillating underwater.
The METAR code for rain is RA, while the coding for rain showers is SHRA.

Virga

In certain conditions, precipitation may fall from a cloud but then evaporate or sublime before reaching the ground. This is termed virga, also known as "fallstreaks" or "precipitation trails", and also refers to an optical phenomenon where the brightness of precipitation appears to abruptly change under a cloud. Virga is common in hot and arid climates, but has been recorded in the Arctic and Antarctica and is known to occur on planets beyond Earth, including Mars and Venus.

Causes

Frontal activity

Stratiform and dynamic precipitation occur as a consequence of slow ascent of air in synoptic systems, such as in the vicinity of cold fronts and near and poleward of surface warm fronts. Similar ascent is seen around tropical cyclones outside the eyewall, and in comma-head precipitation patterns around mid-latitude cyclones.
A wide variety of weather can be found along an occluded front, with thunderstorms possible, but usually, their passage is associated with a drying of the air mass. Occluded fronts usually form around mature low-pressure areas. What separates rainfall from other precipitation types, such as ice pellets and snow, is the presence of a thick layer of air aloft which is above the melting point of water, which melts the frozen precipitation well before it reaches the ground. If there is a shallow near-surface layer that is below freezing, freezing rain will result. Hail becomes an increasingly infrequent occurrence when the freezing level within the atmosphere exceeds above ground level.

Convection

, or showery precipitation, occurs from convective clouds. It falls as showers with rapidly changing intensity. Convective precipitation falls over a certain area for a relatively short time, as convective clouds have limited horizontal extent. Most precipitation in the tropics appears to be convective; however, it has been suggested that stratiform precipitation also occurs. Graupel and hail indicate convection. In mid-latitudes, convective precipitation is intermittent and often associated with baroclinic boundaries such as cold fronts, squall lines, and warm fronts.

Orographic effects

Orographic precipitation occurs on the windward side of mountains and is caused by the rising air motion of a large-scale flow of moist air across the mountain ridge, resulting in adiabatic cooling and condensation. In mountainous parts of the world subjected to relatively consistent winds, a more moist climate usually prevails on the windward side of a mountain than on the leeward or downwind side. Moisture is removed by orographic lift, leaving drier air on the descending and generally warming, leeward side where a rain shadow is observed.
In Hawaii, Mount Waiʻaleʻale, on the island of Kauai, is notable for its extreme rainfall, as it is amongst the places in the world with the highest levels of rainfall, with. Systems known as Kona storms affect the state with heavy rains between October and April. Local climates vary considerably on each island due to their topography, divisible into windward and leeward regions based upon location relative to the higher mountains. Windward sides face the east to northeast trade winds and receive much more rainfall; leeward sides are drier and sunnier, with less rain and less cloud cover.
In South America, the Andes mountain range blocks Pacific moisture that arrives in that continent, resulting in a desert-like climate just downwind across western Argentina. The Sierra Nevada range creates the same effect in North America forming the Great Basin and Mojave Deserts.