Savanna
A savanna or savannah is a mixed woodland-grassland biome and ecosystem characterised by the trees being sufficiently widely spaced so that the canopy does not close. The open canopy allows sufficient light to reach the ground to support an unbroken herbaceous layer consisting primarily of grasses. Four savanna forms exist; savanna woodland, where trees and shrubs form a light canopy; tree savanna, with scattered trees and shrubs; shrub savanna, with distributed shrubs; and grass savanna, where trees and shrubs are mostly nonexistent.
Savannas maintain an open canopy despite a high tree density. It is often believed that savannas feature widely spaced, scattered trees. However, in many savannas, tree densities are higher and trees are more regularly spaced than in forests. The South American savanna types cerrado sensu stricto and cerrado dense typically have densities of trees similar to or higher than that found in South American tropical forests, with savanna ranging from 800 to 3300 trees per hectare and adjacent forests with 800–2000 trees/ha. Similarly Guinean savanna has 129 trees/ha, compared to 103 for riparian forest, while Eastern Australian sclerophyll forests have average tree densities of approximately 100 per hectare, comparable to savannas in the same region.
Savannas are also characterised by seasonal water availability, with the majority of rainfall confined to one season. They are associated with several types of biomes, and are frequently in a transitional zone between forest and desert or grassland, though mostly a transition between desert to forest. Savanna covers approximately 20% of the Earth's land area. Unlike the prairies in North America and steppes in Eurasia, which feature cold winters, savannas are mostly located in areas having warm to hot climates, such as in Africa, Australia, South America, and India.
Etymology
The word derives from the Spanish sabana, which is itself a loanword from Taíno, which means "treeless grassland" in the West Indies.The word originally entered English as the Zauana in a description of the ilands of the kinges of Spayne from 1555. This was equivalent in the orthography of the times to zavana. Peter Martyr reported it as the local name for the plain around Comagre, the court of the cacique Carlos in present-day Panama. The accounts are inexact, but this is usually placed in present-day Madugandí or at points on the nearby Guna Yala coast opposite Ustupo or on Point Mosquitos. These areas are now either given over to modern cropland or jungle.
Distribution
Many grassy landscapes and mixed communities of trees, shrubs, and grasses were described as savanna before the middle of the 19th century, when the concept of a tropical savanna climate became established. The Köppen climate classification system was strongly influenced by effects of temperature and precipitation upon tree growth, and oversimplified assumptions resulted in a tropical savanna classification concept which considered it as a "climatic climax" formation. The common usage to describe vegetation now conflicts with a simplified yet widespread climatic concept. The divergence has sometimes caused areas such as extensive savannas north and south of the Congo and Amazon Rivers to be excluded from mapped savanna categories.In different parts of North America, the word "savanna" has been used interchangeably with "barrens", "prairie", "glade", "grassland" and "oak opening". Different authors have defined the lower limits of savanna tree coverage as 5–10% and upper limits range as 25–80% of an area. Two factors common to all savanna environments are rainfall variations from year to year, and dry season wildfires. In the Americas, e.g. in Belize, Central America, savanna vegetation is similar from Mexico to South America and to the Caribbean. The distinction between woodland and savanna is vague and therefore the two can be combined into a single biome as both woodlands and savannas feature open-canopied trees with crowns not usually interlinking.
Over many large tropical areas, the dominant biome can not be predicted only by the climate, as historical events also play a key role—fire activity, for example. In some areas, indeed, it is possible for there to be multiple stable biomes. The annual rainfall ranges from to per year, with the precipitation being more common in six or eight months of the year, followed by a period of drought. Savannas may at times be classified as forests.
In climatic geomorphology it has been noted that many savannas occur in areas of pediplains and inselbergs. It has been posited that river incision is not prominent but that rivers in savanna landscapes erode more by lateral migration. Flooding and associated sheet wash have been proposed as dominant erosion processes in savanna plains.
Ecology
The savannas of tropical America comprise broadleaved trees such as Curatella, Byrsonima, and Bowdichia, with grasses such as Leersia and Paspalum. Bean relative Prosopis is common in the Argentinian savannas. In the East African savannas, Acacia, Combretum, baobabs, Borassus, and Euphorbia are a common vegetation genera. Drier savannas there feature spiny shrubs and grasses, such as Andropogon, Hyparrhenia, and Themeda. Wetter savannas include Brachystegia trees and Pennisetum purpureum, and elephant grass type. West African savanna trees include Anogeissus, Combretum, and Strychnos. Indian savannas are mostly cleared, but the reserved ones feature Acacia, Mimosa, and Zizyphus over a grass cover comprising Sehima and Dichanthium. The Australian savanna is abundant with sclerophyllous evergreen vegetation, which include the eucalyptus, as well as Acacia, Bauhinia, Pandanus with grasses such as Heteropogon and kangaroo grass.Animals in the African savanna generally include the giraffe, elephant, buffalo, zebra, gnu, hippopotamus, rhinoceros, and antelope, where they rely on grass and/or tree foliage to survive. In the Australian savanna, mammals in the family Macropodidae predominate, such as kangaroos and wallabies, though cattle, horses, camels, donkeys and the Asian water buffalo, among others, have been introduced by humans.
Threats
It is estimated that less than three percent of savanna ecosystems can be classified as highly intact. Reasons for savanna degradation are manifold, as outlined below.Changes in fire management
Savannas are subject to regular wildfires and the ecosystem appears to be the result of human use of fire. For example, Native Americans created the Pre-Columbian woodlands of North America by periodically burning where fire-resistant plants were the dominant species. Fire-stick farming appears to have been responsible for the widespread occurrence of savanna in tropical Australia and New Guinea, and savannas in India are a result of human fire use. The maquis shrub savannas of the Mediterranean region were likewise created and maintained by anthropogenic fire.Intentional controlled burns typically create fires confined to the herbaceous layer that do little long term damage to mature trees. This prevents more catastrophic wildfires that could do much more damage. However, these fires either kill or suppress tree seedlings, thus preventing the establishment of a continuous tree canopy which would prevent further grass growth. Prior to European settlement aboriginal land use practices, including fire, influenced vegetation and may have maintained and modified savanna flora. It has been suggested by many authors that aboriginal burning created a structurally more open savanna landscape. Aboriginal burning certainly created a habitat mosaic that probably increased biodiversity and changed the structure of woodlands and geographic range of numerous woodland species. It has been suggested by many authors that with the removal or alteration of traditional burning regimes many savannas are being replaced by forest and shrub thickets with little herbaceous layer.
The consumption of herbage by introduced grazers in savanna woodlands has led to a reduction in the amount of fuel available for burning and resulted in fewer and cooler fires. The introduction of exotic pasture legumes has also led to a reduction in the need to burn to produce a flush of green growth because legumes retain high nutrient levels throughout the year, and because fires can have a negative impact on legume populations which causes a reluctance to burn.
Grazing and browsing animals
The closed forest types such as broadleaf forests and rainforests are usually not grazed owing to the closed structure precluding grass growth, and hence offering little opportunity for grazing. In contrast the open structure of savannas allows the growth of a herbaceous layer and is commonly used for grazing domestic livestock. As a result, much of the world's savannas have undergone change as a result of grazing by sheep, goats and cattle, ranging from changes in pasture composition to woody plant encroachment.File:Dehesa Pigs.jpg|thumb|Iberian pigs feeding on acorns of an holm oak
The removal of grass by grazing affects the woody plant component of woodland systems in two major ways. Grasses compete with woody plants for water in the topsoil and removal by grazing reduces this competitive effect, potentially boosting tree growth. In addition to this effect, the removal of fuel reduces both the intensity and the frequency of fires which may control woody plant species. Grazing animals can have a more direct effect on woody plants by the browsing of palatable woody species. There is evidence that unpalatable woody plants have increased under grazing in savannas. Grazing also promotes the spread of weeds in savannas by the removal or reduction of the plants which would normally compete with potential weeds and hinder establishment. In addition to this, cattle and horses are implicated in the spread of the seeds of weed species such as prickly acacia and stylo. Alterations in savanna species composition brought about by grazing can alter ecosystem function, and are exacerbated by overgrazing and poor land management practices.
Introduced grazing animals can also affect soil condition through physical compaction and break-up of the soil caused by the hooves of animals and through the erosion effects caused by the removal of protective plant cover. Such effects are most likely to occur on land subjected to repeated and heavy grazing. The effects of overstocking are often worst on soils of low fertility and in low rainfall areas below 500 mm, as most soil nutrients in these areas tend to be concentrated in the surface so any movement of soils can lead to severe degradation. Alteration in soil structure and nutrient levels affects the establishment, growth and survival of plant species and in turn can lead to a change in woodland structure and composition. That being said, impact of grazing animals can be reduced. Looking at Elephant impact on Savannas, the overall impact is reduced in the presence of rainfall and fences.