Textile performance


Textile performance, also known as fitness for purpose, is a textile's capacity to withstand various conditions, environments, and hazards, qualifying it for particular uses. The performance of textile products influences their appearance, comfort, durability, and protection.
The different textile applications require a different set of performance parameters. As a result, the specifications determine the level of performance of a textile product. Textile testing certifies the product's conformity to buying specification. It also describes product manufactured for non-aesthetic purposes, where fitness for purpose is the primary criterion. Engineering of high-performance fabrics presents a unique set of challenges.
The fitness for purpose of textile products is an important consideration for both producers and buyers. Producers, distributors and retailers favor the expectations of the target market, and fashion their wares accordingly.

Serviceability in textiles

Serviceability in textiles or Performance is the ability of textile materials to withstand various conditions, environments, and hazards. The term "serviceability" refers to a textile product's ability to meet the needs of consumers. The emphasis is on knowing the target market and matching the needs of the target market to the product's serviceability.

Concepts of serviceability in textiles

Aesthetics, durability, comfort and safety, appearance retention, care, environmental impact, and cost are the serviceability concepts employed in structuring the material.

Aesthetics

imply the appearance and attraction of textile products; it includes the color, pattern and texture of the material.

Durability

Durability in textiles refers to the product's capacity to endure use; the amount of time the product is regarded adequate for the intended application.

Comfort

The performance of textiles extends to functionality through comfort and protection.
The term "comfort" refers to a state of physical or psychological well-being—our perceptions, physiological, social, and psychological requirements are all part of it. After food, It is the clothing that satisfies these comfort needs.
Clothing provides comfort on a number of levels, including aesthetic, tactile, thermal, moisture, and pressure.
  • Aesthetic comfort: Aesthetic comfort is associated with visual perception that is influenced by color, fabric construction, finish, style, garment fit, and fashion compatibility. Comfort on an aesthetic level is necessary for psychological and social well-being.
  • Thermoregulation in humans and thermophysiological comfort: Thermophysiological comfort is the capacity of the clothing material that makes the balance of moisture and heat between the body and the environment. It is a property of textile materials that creates ease by maintaining moisture and thermal levels in a human's resting and active states. The selection of textile material significantly affects the comfort of the wearer. Different textile fibers have unique properties, that make them suitable for use in various environments. Natural fibers are breathable and absorb moisture. The major determinants that influence thermophysiological comfort are permeable construction, heat, and moisture transfer rate.
  • * Thermal comfort: One primary criterion for our physiological needs is thermal comfort. The heat dissipation effectiveness of clothing gives the wearer a neither very hot nor very cold feel. The optimum temperature for thermal comfort of the skin surface is between, i.e., a neutral temperature. Thermophysiology reacts whenever the temperature falls below or exceeds the neutral point on either side; it is discomforting below 28 and above 30 degrees. Clothing maintains a thermal balance; it keeps the skin dry and cool. It helps to keep the body from overheating while avoiding heat from the environment.
  • * Moisture comfort: Moisture comfort is the prevention of a damp sensation. According to Hollies' research, it feels uncomfortable when more than "50% to 65% of the body is wet."
  • Tactile comfort: Tactile comfort is a resistance to the discomfort related to the friction created by clothing against the body. It is related to the smoothness, roughness, softness, and stiffness of the fabric used in clothing. The degree of tactile discomfort may vary between individuals. It is possible due to various factors, including allergies, tickling, prickling, skin abrasion, coolness, and the fabric's weight, structure, and thickness. There are specific surface finishes that can enhance tactile comfort. Fleece sweatshirts and velvet clothing, for example. Soft, clingy, stiff, heavy, light, hard, sticky, scratchy, prickly are all terms used to describe tactile sensations.
  • Pressure comfort: The comfort of the human body's pressure receptors' sensory response towards clothing. Fabrics with Lycra feels more comfortable because of this response and superior pressure comfort. The sensation response is influenced by the material's structure: snugging, looseness, heavy, light, soft, or stiff structuring.

    Protection

Protection in textiles refers to a large application area where the performance is more central than aesthetic values.
  • UV protection performance in textiles, There are tests to quantify the protection values from harmful ultraviolet rays.
  • Flame retardant textiles
  • Water repellant performance of textiles
  • Waterproofness
  • Cold and wind protection textiles
  • Bacteria and virus protection in textiles. Antiviral textiles are a further exploitation of using antimicrobial surfaces that are applicable to both natural and synthetic textiles. Exhibiting antiviral properties, these surfaces may inactivate the lipid-coated viruses. There are particular test methods for assessing the performance of antiviral textiles.
  • Bulletproof vest

    Appearance retention

The ability of a textile product to retain its appearance after being used, washed, and ironed is referred to as appearance retention.

Care

The treatment necessary to maintain the appearance of textile products is referred to as care. Textile products need to be cleaned and ironed to keep their look. This includes things like how to wash them and how to dry them. Care labelling for textile products takes into account the performance of each component as well as the manufacturing methods.

Cost

It is influenced by a variety of elements. The cost of a textile product includes the raw material, manufacturing, and maintenance costs.

Environmental impact

Every textile product has an impact on the environment. The extent to which textiles harm the environment during manufacturing, care, and disposal is a concept of textile serviceability. The substances which add performance to textiles have a severe impact on the environment and on human health. The halogenated flame retardants, PFC treated stain repellant, and triclosan or triclocarban or silver-containing antimicrobial fabrics certainly have a lot to do with the effluent and environment.
Name of the substanceAdvantage in textile productsAssociated health risks and environmental impactsReferences
Perfluorooctanoic acid, Polytetrafluoroethylene Hydrophobic effectEndocrine disruptor
Fluorocarbon Hydrophobic effectMay cause respiratory illness
BromineBrominated flame retardantPersistent, bioaccumulative and toxic substances may cause Neurobehavioral disorders and Endocrine disruption
Silver Or Silver nanoparticleAntimicrobial resistanceEnvironmental impact of silver nanoparticles and toxic effects on human health

Fundamentally, each fiber and fabric has distinct properties, and they are chosen based on their suitability for fitness for purpose. Users have five basic criteria for performance, including appearance, comfort, durability, maintenance, and cost. These performance expectations are not the same as those of specialist textiles. Due to the often highly technical and legal requirements of these products, these textiles are typically tested in order to ensure they meet stringent performance requirements. A few examples of different areas are:
  • Sportswear must have these characteristics: strength, moisture management, stretch, and thermal comfort.
  • Military textiles demand protection from hostile weather. A bulletproof vest necessitates low impact. Camouflage may be needed.
  • Firefighting clothing must be flame resistant, thermally resistant, and lightweight. Water resistance and visibility are requirements for bunker gear. Turnout gear for firefighters is not a "one size fits all" proposition. It depends on the individual role and duties assigned.
  • Occupational hazards demand a specific degree of protection.
  • Medical textiles need clothing with barriers and antimicrobial surfaces, such as cleanroom suits and hazmat suits.
  • Wearable electronics in E-textiles require flexibility as well as washability.
  • Body armor demands specific performance standards.
  • Wetsuits are made with neoprene and butyl rubber. The foamed neoprene of the suit thermally insulates the wearer.
  • Automotive textiles have specific performance requirements in various sections of the car. The different types of fibers used for separate areas of the car's interior are shown below:
Tensile strength, bursting, sensorial comfort, thermal comfort, heat transfer, water repellency MVTR, air permeability, pilling, shrinkage, fading, lightfastness, drape and hand feel are a few performance parameters.

Properties

Performance of textile products is primarily based on fiber and fabric structure. Fiber properties are fundamentally determined by their physical and chemical properties. Specific finishing methods, functional finishes, fit, and product design could all be used to improve the overall performance of a textile product, allowing it to achieve higher performance levels.
Performance has an array of characteristics that affect appearance, durability, and comfort. Performance characteristics are in-built or incorporated into the textile materials. For example, technical textiles are classified into twelve separate categories. In which the performance is predetermined, and textiles are manufactured and structured as per the application and end-use. Durable water repellent is another functional finish that makes fabrics resistant to water.
Clothing insulation is a property that provides thermal insulation for the wearer. A stain-repellent is an added property of fabrics to make them stain resistant. Sun protective clothing aids in the avoidance of both light and harmful UV rays.
There is a whole panoply of properties that relate to material functionality and their use in performance fabric applications. These include, inter alia:
  • Abrasion resistance, is the resistance of materials and structures to abrasion can be measured by a variety of test methods.
  • Antimicrobial, In textiles is an application of an agent that kills microorganisms or stops their growth.
  • Antistatic, is an application of a compound used for treatment of materials or their surfaces in order to reduce or eliminate buildup of static electricity.
  • Air permeability is a fabric's ability to allow air to pass through it. While air permeable fabrics tend to have relatively high moisture vapor transmission, it is not compulsory to be air permeable to be breathable.
  • Breathability, the capacity of a fabric to transmit moisture vapour.
  • Biodegradable, is important for sustainability, it is the breakdown of organic matter by microorganisms, such as bacteria and fungi. Natural fibers are easily biodegradable, hence more sustainable.
  • Bioresorbable
  • Bomb suit, is a specialized body armor for protection from explosions.
  • Colour fastness, characterizes a material's colour's resistance to fading or running.
  • Conductive
  • Crease and wrinkle resistance are textiles that have been treated to resist external stress and hold their shape. Clothing made from this fabric does not need to be ironed and may be sold as non-iron, no-iron, wash and wear, durable press, and easy care. While fabric cleaning and maintenance may be simplified, some wearers experience decreased comfort.
  • Dimensional stability, also known as shrinkage in fabrics is the change of dimensions in textile products when they are washed or relaxed.
  • Durable water repellent, is a functional finish to make fabrics water-resistant.
  • Enhanced coloration
  • Flame and heat resistance, are textiles that are more resistant to fire than others through chemical treatment or manufactured fireproof fibers.
  • Fluorescence Fluorescent compounds are often used to enhance the appearance of fabric and paper, causing a "whitening" effect. In this scenario, an optical brightener can make an already-white surface appear brighter. The blue light emitted by the brightener compensates for the diminishing blue of the treated material and changes the hue away from yellow or brown and toward white. Optical brighteners are used in laundry detergents, high brightness paper, cosmetics, high-visibility clothing and more.
  • Hand feel, the property of fabrics related to the touch that express sensory comfort. It refers to the way fabrics feel against the skin or in the hand and conveys information about the cloth's softness and smoothness.
  • Heated clothing is a type of clothing designed for cold-weather sports and activities, such as motorcycle riding, downhill skiing, diving, winter biking, and snowmobiling, trekking and for outdoor workers such as construction workers and carpenters.
  • High-visibility clothing is a type of safety clothing.
  • Hydrophilicity
  • Hydrophobicity
  • Light responsive, Light reflective
  • Luminescence
  • Oleophobicity
  • Pilling is generally considered an undesirable trait. There are applications that can resist pilling caused by wearing.
  • Racing suit is a kind of fire suit due to its fire retardant properties, is clothing such as overalls worn in various forms of auto racing by racing drivers, crew members.
  • Reinforcement
  • Sauna suit is a garment made from waterproof fabric designed to make the wearer sweat profusely.
  • Space suit is a garment worn to keep a human alive in the harsh environment of outer space, vacuum and temperature extremes.
  • Stain resistance is a property of fabrics in which they repel stains.
  • Thermal insulation
  • Thermal responsive
  • Ultrafiltration
  • Ultraviolet resistance
  • Waterproof fabrics are those that are naturally resistant to water and wetting, or have been treated to be so.