RNA world


The RNA world is a hypothetical stage in the evolutionary history of life on Earth in which self-replicating RNA molecules proliferated before the evolution of DNA and proteins. The term also refers to the hypothesis that posits the existence of this stage. Alexander Rich first proposed the concept of the RNA world in 1962, and Walter Gilbert coined the term in 1986.
Among the characteristics of RNA that suggest its original prominence are that:
  • Like DNA, RNA can store and replicate genetic information. Although RNA is considerably more fragile than DNA, some ancient RNAs may have evolved the ability to methylate other RNAs to protect them. The concurrent formation of all four RNA building blocks further strengthens the hypothesis.
  • Enzymes made of RNA can catalyze chemical reactions that are critical for life, so it is conceivable that in an RNA world, ribozymes might have preceded enzymes made of protein.
  • Many coenzymes that have fundamental roles in cellular life, such as acetyl-CoA, NADH, FADH, and F420, are structurally strikingly similar to RNA and so may be surviving remnants of covalently bound coenzymes in an RNA world.
  • One of the most critical components of cells, the ribosome, is composed primarily of RNA.
Although alternative chemical paths to life have been proposed, and RNA-based life may not have been the first life to exist, the RNA world hypothesis seems to be the most favored abiogenesis paradigm. However, even proponents agree that there is still not conclusive evidence to completely falsify other paradigms and hypotheses. Regardless of its plausibility in a prebiotic scenario, the RNA world can serve as a model system for studying the origin of life.
If the RNA world existed, it was probably followed by an age characterized by the evolution of ribonucleoproteins, which in turn ushered in the era of DNA and longer proteins. DNA has greater stability and durability than RNA, which may explain why it became the predominant information storage molecule. Protein enzymes may have replaced RNA-based ribozymes as biocatalysts because the greater abundance and diversity of the monomers of which they are built makes them more versatile. As some cofactors contain both nucleotide and amino-acid characteristics, it may be that amino acids, peptides, and finally proteins initially were cofactors for ribozymes.

History

One of the challenges in studying abiogenesis is that the system of reproduction and metabolism utilized by all extant life involves three distinct types of interdependent macromolecules, none of which can function and reproduce without the others, the classic chicken-and-egg paradox. This suggests that life could not have arisen in its current form, which has led researchers to hypothesize mechanisms whereby the current system might have arisen from a simpler precursor system. American molecular biologist Alexander Rich was the first to posit a coherent hypothesis on the origin of nucleotides as precursors of life. In a 1962 article he explained that the primitive Earth's environment could have produced RNA molecules that eventually acquired enzymatic and self-replicating functions.
Other mentions of RNA as a primordial molecule can be found in papers by Francis Crick and Leslie Orgel, as well as in Carl Woese's 1967 book The Genetic Code. Hans Kuhn in 1972 laid out a possible process by which the modern genetic system might have arisen from a nucleotide-based precursor, and this led Harold White in 1976 to observe that many of the cofactors essential for enzymatic function are either nucleotides or could have been derived from nucleotides. He proposed a scenario whereby the critical electrochemistry of enzymatic reactions would have necessitated retention of the specific nucleotide moieties of the original RNA-based enzymes carrying out the reactions, while the remaining structural elements of the enzymes were gradually replaced by protein, until all that remained of the original RNAs were these nucleotide cofactors, "fossils of nucleic acid enzymes".

Properties of RNA

The properties of RNA make the idea of the RNA world hypothesis conceptually plausible, though its general acceptance as an explanation for the origin of life requires further evidence. RNA is known to form efficient catalysts, and its similarity to DNA makes clear its ability to store information. Opinions differ, however, as to whether RNA constituted the first autonomous self-replicating system or was a derivative of a still-earlier system. One version of the hypothesis is that a different type of nucleic acid, termed pre-RNA, was the first one to emerge as a self-reproducing molecule, to be replaced by RNA only later. On the other hand, the discovery in 2009 that activated pyrimidine ribonucleotides can be synthesized under plausible prebiotic conditions suggests that it is premature to dismiss the RNA-first scenarios. Suggestions for 'simple' pre-RNA nucleic acids have included peptide nucleic acid, threose nucleic acid or glycol nucleic acid. Despite their structural simplicity and possession of properties comparable with RNA, the chemically plausible generation of "simpler" nucleic acids under prebiotic conditions has yet to be demonstrated.

RNA as an enzyme

In the 1980s, RNA structures capable of self-processing were discovered, with the RNA moiety of ribonuclease P acting as its catalytic subunit. These catalytic RNAs – referred to as RNA enzymes, or ribozymes – are found in today's DNA-based life and could be examples of living fossils. Ribozymes play vital roles, such as that of the ribosome. The large subunit of the ribosome includes an rRNA responsible for the peptide bond-forming peptidyl transferase activity of protein synthesis. Many other ribozyme activities exist; for example, the hammerhead ribozyme performs self-cleavage and an RNA polymerase ribozyme can synthesize a short RNA strand from a primed RNA template.
Among the enzymatic properties important for the beginning of life are:
;Self-replication
;Catalysis
;Amino acid-RNA ligation
;Peptide bond formation

Cofactors

RNA in information storage

RNA is a very similar molecule to DNA, with only two significant chemical differences. The overall structure of RNA and DNA are immensely similar—one strand of DNA and one of RNA can bind to form a double helical structure. This makes the storage of information in RNA possible in a very similar way to the storage of information in DNA. However, RNA is less stable, being more prone to hydrolysis due to the presence of a hydroxyl group at the ribose 2' position.

Comparison of DNA and RNA structure

The major difference between RNA and DNA is the presence of a hydroxyl group at the 2'-position of the ribose sugar in RNA. This group makes the molecule less stable because, when not constrained in a double helix, the 2' hydroxyl can chemically attack the adjacent phosphodiester bond to cleave the phosphodiester backbone. The hydroxyl group also forces the ribose into the C3'-endo sugar conformation unlike the C2'-endo conformation of the deoxyribose sugar in DNA. This forces an RNA double helix to change from a B-DNA structure to one more closely resembling A-DNA.
RNA also uses a different set of bases than DNA—adenine, guanine, cytosine and uracil, instead of adenine, guanine, cytosine and thymine. Chemically, uracil is similar to thymine, differing only by a methyl group, and its production requires less energy. In terms of base pairing, this has no effect. Adenine readily binds uracil or thymine. Uracil is, however, one product of damage to cytosine that makes RNA particularly susceptible to mutations that can replace a GC base pair with a GU or AU base pair.
RNA is thought to have preceded DNA, because of their ordering in the biosynthetic pathways. The deoxyribonucleotides used to make DNA are made from ribonucleotides, the building blocks of RNA, by removing the 2'-hydroxyl group. As a consequence, a cell must have the ability to make RNA before it can make DNA.

Limitations of information storage in RNA

The chemical properties of RNA make large RNA molecules inherently fragile, and they can easily be broken down into their constituent nucleotides through hydrolysis. These limitations do not make use of RNA as an information storage system impossible, simply energy intensive and prone to mutation. While this makes it unsuitable for current 'DNA optimised' life, it may have been acceptable for more primitive life.

RNA as a regulator

Riboswitches have been found to act as regulators of gene expression, particularly in bacteria, but also in plants and archaea. Riboswitches alter their secondary structure in response to the binding of a metabolite. Riboswitch classes have highly conserved aptamer domains, even among diverse organisms. When a target metabolite is bound to this aptamer, conformational changes occur, modulating the expression of genes carried by mRNA. These changes occur in an expression platform, located downstream from the aptamer. This change in structure can result in the formation or disruption of a terminator, truncating or permitting transcription respectively. Alternatively, riboswitches may bind or occlude the Shine–Dalgarno sequence, affecting translation. It has been suggested that these originated in an RNA-based world. In addition, RNA thermometers regulate gene expression in response to temperature changes.

Support and difficulties

The RNA world hypothesis is supported by RNA's ability to do all three of to store, to transmit, and to duplicate genetic information, as DNA does, and to perform enzymatic reactions, like protein-based enzymes. Because it can carry out the types of tasks now performed by proteins and DNA, RNA is believed to have once been capable of supporting independent life on its own. Some viruses use RNA as their genetic material, rather than DNA. Further, while nucleotides were not found in experiments based on Miller-Urey experiment, their formation in prebiotically plausible conditions was reported in 2009; a purine base, adenine, is merely a pentamer of hydrogen cyanide, and it happens that this particular base is used as omnipresent energy vehicle in the cell: adenosine triphosphate is used everywhere in preference to guanosine triphosphate, cytidine triphosphate, uridine triphosphate or even deoxythymidine triphosphate, which could serve just as well but are practically never used except as building blocks for nucleic acid chains. Experiments with basic ribozymes, like Bacteriophage Qβ RNA, have shown that simple self-replicating RNA structures can withstand even strong selective pressures.
Since there were no known chemical pathways for the abiogenic synthesis of nucleotides from pyrimidine nucleobases cytosine and uracil under prebiotic conditions, it is thought by some that nucleic acids did not contain these nucleobases seen in life's nucleic acids. The nucleoside cytosine has a half-life in isolation of 19 days at and 17,000 years in freezing water, which some argue is too short on the geologic time scale for accumulation. Others have questioned whether ribose and other backbone sugars could be stable enough to be found in the original genetic material, and have raised the issue that all ribose molecules would have had to be the same enantiomer, as any nucleotide of the wrong chirality acts as a chain terminator.
Pyrimidine ribonucleosides and their respective nucleotides have been prebiotically synthesised by a sequence of reactions that by-pass free sugars and assemble in a stepwise fashion by including nitrogenous and oxygenous chemistries. In a series of publications, John Sutherland and his team at the School of Chemistry, University of Manchester, have demonstrated high yielding routes to cytidine and uridine ribonucleotides built from small 2- and 3-carbon fragments such as glycolaldehyde, glyceraldehyde or glyceraldehyde-3-phosphate, cyanamide, and cyanoacetylene. One of the steps in this sequence allows the isolation of enantiopure ribose aminooxazoline if the enantiomeric excess of glyceraldehyde is 60% or greater, of possible interest toward biological homochirality. This can be viewed as a prebiotic purification step, where the said compound spontaneously crystallised out from a mixture of the other pentose aminooxazolines. Aminooxazolines can react with cyanoacetylene in a mild and highly efficient manner, controlled by inorganic phosphate, to give the cytidine ribonucleotides. Photoanomerization with UV light allows for inversion about the 1' anomeric centre to give the correct beta stereochemistry; one problem with this chemistry is the selective phosphorylation of alpha-cytidine at the 2' position. However, in 2009, they showed that the same simple building blocks allow access, via phosphate controlled nucleobase elaboration, to 2',3'-cyclic pyrimidine nucleotides directly, which are known to be able to polymerise into RNA. Organic chemist Donna Blackmond described this finding as "strong evidence" in favour of the RNA world. However, John Sutherland said that while his team's work suggests that nucleic acids played an early and central role in the origin of life, it did not necessarily support the RNA world hypothesis in the strict sense, which he described as a "restrictive, hypothetical arrangement".
The Sutherland group's 2009 paper also highlighted the possibility for the photo-sanitization of the pyrimidine-2',3'-cyclic phosphates. A potential weakness of these routes is the generation of enantioenriched glyceraldehyde, or its 3-phosphate derivative.
On August 8, 2011, a report, based on NASA studies with meteorites found on Earth, was published suggesting building blocks of RNA may have been formed in outer space. In 2017, research using a numerical model suggested that a RNA world may have emerged in warm ponds on the early Earth, and that meteorites were a plausible and probable source of the RNA building blocks to these environments. On August 29, 2012, astronomers at Copenhagen University reported the detection of a specific sugar molecule, glycolaldehyde, in a distant star system. The molecule was found around the protostellar binary IRAS 16293-2422, which is located 400 light years from Earth. Because glycolaldehyde is needed to form RNA, this finding suggests that complex organic molecules may form in stellar systems prior to the formation of planets, eventually arriving on young planets early in their formation. Nitriles, key molecular precursors of the RNA World scenario, are among the most abundant chemical families in the universe and have been found in molecular clouds in the center of the Milky Way, protostars of different masses, meteorites and comets, and also in the atmosphere of Titan, the largest moon of Saturn.
A study in 2001 shows that nicotinic acid and its precursor, quinolinic acid can be "produced in yields as high as 7% in a six-step nonenzymatic sequence from aspartic acid and dihydroxyacetone phosphate. The biosynthesis of ribose phosphate could have produced DHAP and other three carbon compounds. Aspartic acid could have been available from prebiotic synthesis or from the ribozyme synthesis of pyrimidines." This supports that NAD could have originated in the RNA world. RNA sequences at lengths of 30 nucleotides, 60 nucleotides, 100 nucleotides, and 140 nucleotides, were capable of catalysis of "the synthesis of three common coenzymes, CoA, NAD, and FAD, from their precursors, 4'-phosphopantetheine, NMN, and FMN, respectively".