Transfer RNA


Transfer ribonucleic acid, formerly referred to as soluble ribonucleic acid, is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length. In a cell, it provides the physical link between the genetic code in messenger RNA and the amino acid sequence of proteins, carrying the correct sequence of amino acids to be combined by the protein-synthesizing machinery, the ribosome. Each three-nucleotide codon in mRNA is complemented by a three-nucleotide anticodon in tRNA. As such, tRNAs are a necessary component of translation, the biological synthesis of new proteins in accordance with the genetic code.

Overview

The process of translation starts with the information stored in the nucleotide sequence of DNA. This is first transformed into mRNA, then tRNA specifies which three-nucleotide codon from the genetic code corresponds to which amino acid. Each mRNA codon is recognized by a particular type of tRNA, which docks to it along a three-nucleotide anticodon, and together they form three complementary base pairs.
On the other end of the tRNA is a covalent attachment to the amino acid corresponding to the anticodon sequence, with each type of tRNA attaching to a specific amino acid. Because the genetic code contains multiple codons that specify the same amino acid, there are several tRNA molecules bearing different anticodons which carry the same amino acid.
The covalent attachment to the tRNA 3' end is catalysed by enzymes called aminoacyl tRNA synthetases. During protein synthesis, tRNAs with attached amino acids are delivered to the ribosome by proteins called elongation factors, which aid in association of the tRNA with the ribosome, synthesis of the new polypeptide, and translocation of the ribosome along the mRNA. If the tRNA's anticodon matches the mRNA, another tRNA already [|bound to the ribosome] transfers the growing polypeptide chain from its 3' end to the amino acid attached to the 3' end of the newly delivered tRNA, a reaction catalyzed by the ribosome. A large number of the individual nucleotides in a tRNA molecule may be chemically modified, often by methylation or deamidation. These unusual bases sometimes affect the tRNA's interaction with ribosomes and sometimes occur in the anticodon to alter base-pairing properties.
The addition of a guanine nucleotide at the -1 position to the 5′ end of tRNA-His, catalyzed by tRNA-His guanylyltransferase and Thg1-like proteins is particularly notable as it proceeds in the 3′ to 5′ direction, which is opposite to the canonical 5′ to 3′ nucleotide addition used by all other known nucleic acid polymerases. This reverse polymerization mechanism is biochemically unique and evolutionarily conserved, highlighting its fundamental importance in tRNA maturation. Homologs of Thg1 are found in all domains of life, where they can also participate in tRNA repair and quality control. The presence of G-1 is a key identity element for tRNA-His, and its absence severely impairs histidylation efficiency and tRNA function.

Structure

The structure of tRNA can be decomposed into its primary structure, its secondary structure, and its tertiary structure. The cloverleaf structure becomes the 3D L-shaped structure through coaxial stacking of the helices, which is a common RNA tertiary structure motif. The lengths of each arm, as well as the loop 'diameter', in a tRNA molecule vary from species to species.
The tRNA structure consists of the following:
  • The acceptor stem is a 7- to 9-base pair stem made by the base pairing of the 5′-terminal nucleotide with the 3′-terminal nucleotide. The acceptor stem may contain non-Watson-Crick base pairs.
  • The CCA tail is a cytosine-cytosine-adenine sequence at the 3′ end of the tRNA molecule. The amino acid loaded onto the tRNA by aminoacyl tRNA synthetases, to form aminoacyl-tRNA, is covalently bonded to the 3′-hydroxyl group on the CCA tail. This sequence is important for the recognition of tRNA by enzymes and critical in translation. In prokaryotes, the CCA sequence is transcribed in some tRNA sequences. In most prokaryotic tRNAs and eukaryotic tRNAs, the CCA sequence is added during processing and therefore does not appear in the tRNA gene.
  • The D loop is a 4- to 6-bp stem ending in a loop that often contains dihydrouridine.
  • The anticodon loop is a 5-bp stem whose loop contains the anticodon.
  • The TΨC loop is named so because of the characteristic presence of the unusual base Ψ in the loop, where Ψ is pseudouridine, a modified uridine. The modified base is often found within the sequence 5'-TΨCGA-3', with the T and A forming a base pair.
  • The variable loop or V loop sits between the anticodon loop and the ΨU loop and, as its name implies, varies in size from 3 to 21 bases. In some tRNAs, the "loop" is long enough to form a rigid stem, the variable arm. tRNAs with a V loop more than 10 bases long is classified as "class II" and the rest is called "class I".

    Anticodon

An anticodon is a unit of three nucleotides corresponding to the three bases of an mRNA codon. Each tRNA has a distinct anticodon triplet sequence that can form 3 complementary base pairs to one or more codons for an amino acid. Some anticodons pair with more than one codon due to wobble base pairing. Frequently, the first nucleotide of the anticodon is one not found on mRNA: inosine, which can hydrogen bond to more than one base in the corresponding codon position. In genetic code, it is common for a single amino acid to be specified by all four third-position possibilities, or at least by both pyrimidines and purines; for example, the amino acid glycine is coded for by the codon sequences GGU, GGC, GGA, and GGG. Other modified nucleotides may also appear at the first anticodon position—sometimes known as the "wobble position"—resulting in subtle changes to the genetic code, as for example in mitochondria. The possibility of wobble bases reduces the number of tRNA types required: instead of 61 types with one for each sense codon of the standard genetic code), only 31 tRNAs are required to translate, unambiguously, all 61 sense codons.

Nomenclature

A tRNA is commonly named by its intended amino acid, by its anticodon sequence, or by both. These two features describe the main function of the tRNA, but do not actually cover the whole diversity of tRNA variation; as a result, numerical suffixes are added to differentiate. tRNAs intended for the same amino acid are called "isotypes"; when isotypes also share the same anticodon they are called "isoacceptors"; and when isotypes have an identical mature sequence they are called "isodecoders".

Aminoacylation

is the process of adding an aminoacyl group to a compound. It covalently links an amino acid to the CCA 3′ end of a tRNA molecule.
Each tRNA is aminoacylated with a specific amino acid by an aminoacyl tRNA synthetase. There is normally a single aminoacyl tRNA synthetase for each amino acid, despite the fact that there can be more than one tRNA, and more than one anticodon for an amino acid. Recognition of the appropriate tRNA by the synthetases is not mediated solely by the anticodon, and the acceptor stem often plays a prominent role.
Reaction:
  1. amino acid + ATP → aminoacyl-AMP + PPi
  2. aminoacyl-AMP + tRNA → aminoacyl-tRNA + AMP
Certain organisms can have one or more aminophosphate-tRNA synthetases missing. This leads to charging of the tRNA by a chemically related amino acid, and by use of an enzyme or enzymes, the tRNA is modified to be correctly charged. For example, Helicobacter pylori has glutaminyl tRNA synthetase missing. Thus, glutamate tRNA synthetase charges tRNA-glutamine with glutamate. An amidotransferase then converts the acid side chain of the glutamate to the amide, forming the correctly charged gln-tRNA-Gln.

Binding to ribosome

The ribosome has three binding sites for tRNA molecules that span the space between the two ribosomal subunits: the A, P, and E sites. In addition, the ribosome has two other sites for tRNA binding that are used during mRNA decoding or during the initiation of protein synthesis. These are the T site and I site. By convention, the tRNA binding sites are denoted with the site on the small ribosomal subunit listed first and the site on the large ribosomal subunit listed second. For example, the A site is often written A/A, the P site, P/P, and the E site, E/E. The binding proteins like L27, L2, L14, L15, L16 at the A- and P- sites have been determined by affinity labeling by A. P. Czernilofsky et al..
Once translation initiation is complete, the first aminoacyl tRNA is located in the P/P site, ready for the elongation cycle described below. During translation elongation, tRNA first binds to the ribosome as part of a complex with elongation factor Tu or its eukaryotic or archaeal counterpart. This initial tRNA binding site is called the A/T site. In the A/T site, the A-site half resides in the small ribosomal subunit where the mRNA decoding site is located. The mRNA decoding site is where the mRNA codon is read out during translation. The T-site half resides mainly on the large ribosomal subunit where EF-Tu or eEF-1 interacts with the ribosome. Once mRNA decoding is complete, the aminoacyl-tRNA is bound in the A/A site and is ready for the next peptide bond to be formed to its attached amino acid. The peptidyl-tRNA, which transfers the growing polypeptide to the aminoacyl-tRNA bound in the A/A site, is bound in the P/P site. Once the peptide bond is formed, the tRNA in the P/P site is acylated, or has a [|free 3' end], and the tRNA in the A/A site dissociates the growing polypeptide chain. To allow for the next elongation cycle, the tRNAs then move through hybrid A/P and P/E binding sites, before completing the cycle and residing in the P/P and E/E sites. Once the A/A and P/P tRNAs have moved to the P/P and E/E sites, the mRNA has also moved over by one codon and the A/T site is vacant, ready for the next round of mRNA decoding. The tRNA bound in the E/E site then leaves the ribosome.
The P/I site is actually the first to bind to aminoacyl tRNA, which is delivered by an initiation factor called IF2 in bacteria. However, the existence of the P/I site in eukaryotic or archaeal ribosomes has not yet been confirmed. The P-site protein L27 has been determined by affinity labeling by E. Collatz and A. P. Czernilofsky.