Panspermia


Panspermia is the hypothesis that life exists throughout the universe, distributed by cosmic dust, meteoroids, asteroids, comets, and planetoids, as well as by spacecraft carrying unintended contamination by microorganisms, known as directed panspermia. The theory argues that life did not originate on Earth, but instead evolved somewhere else and seeded life as we know it.
Panspermia comes in many forms, such as radiopanspermia, lithopanspermia, and directed panspermia. Regardless of its form, the theories generally propose that microbes able to survive in outer space can become trapped in debris ejected into space after collisions between planets and small Solar System bodies that harbor life. This debris containing the lifeforms is then transported by meteors between bodies in a planetary system, or even across planetary systems within a galaxy. In this way, panspermia studies concentrate not on how life began but on methods that may distribute it within the Universe. This point is often used as a criticism of the theory.
Panspermia is a fringe theory with little support amongst mainstream scientists. Critics argue that it does not answer the question of the origin of life but merely places it on another celestial body. It is further criticized because it cannot be tested experimentally. Historically, disputes over the merit of this theory centered on whether life is ubiquitous or emergent throughout the Universe. The theory maintains support today, with some work being done to develop mathematical treatments of how life might migrate naturally throughout the Universe. Its long history lends itself to extensive speculation and hoaxes that have arisen from meteoritic events.
In contrast, pseudo-panspermia is the well-supported hypothesis that many of the small organic molecules used for life originated in space, and were distributed to planetary surfaces.

History

Panspermia has a history dating back to the 5th century BCE and the natural philosopher Anaxagoras. Classicists came to agree that Anaxagoras maintained the Universe was full of life, and that life on Earth started from the fall of these extra-terrestrial seeds. Panspermia as it is known today, however, is not identical to this original theory. The name, as applied to this theory, was only first coined in 1908 by Svante Arrhenius, a Swedish scientist. Prior to this, since around the 1860s, many prominent scientists were becoming interested in the theory. More recent advocates include Sir Fred Hoyle, and Chandra Wickramasinghe.
In the 1860s, there were three scientific developments that began to bring the focus of the scientific community to the problem of the origin of life. Firstly, the Kant-Laplace Nebular theory of solar system and planetary formation was gaining favor, and implied that when the Earth first formed, the surface conditions would have been inhospitable to life as we know it. This meant that life could not have evolved parallel with the Earth, and must have evolved at a later date, without biological precursors. Secondly, Charles Darwin's famous theory of evolution implied some elusive origin, because in order for something to evolve, it must start somewhere. In his Origin of Species, Darwin was unable or unwilling to touch on this issue. Third and finally, Louis Pasteur and John Tyndall experimentally disproved the theory of spontaneous generation, which suggested that life was constantly evolving from non-living matter and did not have a common ancestor, as suggested by Darwin's theory of evolution.
Altogether, these three developments in science presented the wider scientific community with a seemingly paradoxical situation regarding the origin of life: life must have evolved from non-biological precursors after the Earth was formed, and yet spontaneous generation as a theory had been experimentally disproved. From here, is where the study of the origin of life branched. Those who accepted Pasteur's rejection of spontaneous generation began to develop the theory that under conditions on a primitive Earth, life must have gradually evolved from organic material. This theory became known as abiogenesis, and is the currently accepted one. On the other side of this are those scientists of the time who rejected Pasteur's results and instead supported the idea that life on Earth came from existing life. This necessarily requires that life has always existed somewhere on some planet, and that it has a mechanism of transferring between planets. Thus, the modern treatment of panspermia began in earnest.
Lord Kelvin, in a presentation to The British Association for the Advancement of Science in 1871, proposed the idea that similarly to how seeds can be transferred through the air by winds, so can life be brought to Earth by the infall of a life-bearing meteorite. He further proposed the idea that life can only come from life, and that this principle is invariant under philosophical uniformitarianism, similar to how matter can neither be created nor destroyed. This argument was heavily criticized because of its boldness, and additionally due to technical objections from the wider community. In particular, Johann Zollner from Germany argued against Kelvin by saying that organisms carried in meteorites to Earth would not survive the descent through the atmosphere due to friction heating.
The arguments went back and forth until Svante Arrhenius gave the theory its modern treatment and designation. Arrhenius argued against abiogenesis on the basis that it had no experimental foundation at the time, and believed that life had always existed somewhere in the Universe. He focused his efforts of developing the mechanism by which this pervasive life may be transferred through the Universe. At this time, it was recently discovered that solar radiation can exert pressure, and thus force, on matter. Arrhenius thus concluded that it is possible that very small organisms such as bacterial spores could be moved around due to this radiation pressure.
At this point, panspermia as a theory now had a potentially viable transport mechanism, as well as a vehicle for carrying life from planet to planet. The theory still faced criticism mostly due to doubts about how long spores would actually survive under the conditions of their transport from one planet, through space, to another. Despite all the emphasis placed on trying to establish the scientific legitimacy of this theory, it still lacked testability; that was and still is a serious problem the theory has yet to overcome.
Support for the theory persisted, however, with Fred Hoyle and Chandra Wickramasinghe using two reasons for why an extra-terrestrial origin of life might be preferred. First is that required conditions for the origin of life may have been more favorable somewhere other than Earth, and second that life on Earth exhibits properties that are not accounted for by assuming an endogenic origin. Hoyle studied spectra of interstellar dust, and came to the conclusion that space contained large amounts of organics, which he suggested were the building blocks of the more complex chemical structures. Critically, Hoyle argued that this chemical evolution was unlikely to have taken place on a prebiotic Earth, and instead the most likely candidate is a comet. Furthermore, Hoyle and Wickramasinghe concluded that the evolution of life requires a large increase in genetic information and diversity, which might have resulted from the influx of viral material from space via comets. Hoyle reported a pattern of coincidence between the arrival of major epidemics and the occasions of close encounters with comets, which lead Hoyle to suggest that the epidemics were a direct result of material raining down from these comets. This claim in particular garnered criticism from biologists.
Since the 1970s, a new era of planetary exploration meant that data could be used to test panspermia and potentially transform it from conjecture to a testable theory. Though it has yet to be tested, panspermia is still explored today in some mathematical treatments, and as its long history suggests, the appeal of the theory has stood the test of time.

Overview

Core requirements

Panspermia requires:
  1. that organic molecules originated in space,
  2. that life originated from these molecules, extraterrestrially,
  3. that this extraterrestrial life was transported to Earth.
The creation and distribution of organic molecules from space is now uncontroversial; it is known as pseudo-panspermia. The jump from organic materials to life originating from space, however, is hypothetical and currently untestable.

Transport vessels

Bacterial spores and plant seeds are two common proposed vessels for panspermia. According to the theory, they could be encased in a meteorite and transported to another planet from their origin, subsequently descend through the atmosphere and populate the surface with life. This naturally requires that these spores and seeds have formed somewhere else, maybe even in space in the case of how panspermia deals with bacteria. Understanding of planetary formation theory and meteorites has led to the idea that some rocky bodies originating from undifferentiated parent bodies could be able to generate local conditions conducive to life. Hypothetically, internal heating from radiogenic isotopes could melt ice to provide water as well as energy. In fact, some meteorites have been found to show signs of aqueous alteration which may indicate that this process has taken place. Given that there are such large numbers of these bodies found within the Solar System, an argument can be made that they each provide a potential site for life to develop. A collision occurring in the asteroid belt could alter the orbit of one such site, and eventually deliver it to Earth.
Plant seeds can be an alternative transport vessel. Some plants produce seeds that are resistant to the conditions of space, which have been shown to lie dormant in extreme cold, vacuum, and resist short wavelength UV radiation. They are not typically proposed to have originated in space, but on another planet. Theoretically, even if a plant is partially damaged during its travel in space, the pieces could still seed life in a sterile environment. Sterility of the environment is relevant because it is unclear if the novel plant could out-compete existing life forms. This idea is based on previous evidence showing that cellular reconstruction can occur from cytoplasms released from damaged algae. Furthermore, plant cells contain obligate endosymbionts, which could be released into a new environment.
Though both plant seeds and bacterial spores have been proposed as potentially viable vehicles, their ability to not only survive in space for the required time, but also survive atmospheric entry is debated.
Space probes may be a viable transport mechanism for interplanetary cross-pollination within the Solar System. Space agencies have implemented planetary protection procedures to reduce the risk of planetary contamination, but microorganisms such as Tersicoccus phoenicis may be resistant to spacecraft assembly cleaning.