Francis Crick
Francis Harry Compton Crick was an English molecular biologist, biophysicist, and neuroscientist. He, James Watson, Rosalind Franklin, and Maurice Wilkins played crucial roles in deciphering the helical structure of the DNA molecule.
Crick and Watson's paper in Nature in 1953 laid the groundwork for understanding DNA structure and functions. Together with Maurice Wilkins, they were jointly awarded the 1962 Nobel Prize in Physiology or Medicine "for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material".
Crick was an important theoretical molecular biologist and played a crucial role in research related to revealing the helical structure of DNA. He is widely known for the use of the term "central dogma" to summarise the idea that once information is transferred from nucleic acids to proteins, it cannot flow back to nucleic acids. In other words, the final step in the flow of information from nucleic acids to proteins is irreversible.
During the remainder of his career, Crick held the post of J.W. Kieckhefer Distinguished Research Professor at the Salk Institute for Biological Studies in La Jolla, California. His later research centred on theoretical neurobiology and attempts to advance the scientific study of human consciousness. Crick remained in this post until his death in 2004; "he was editing a manuscript on his death bed, a scientist until the bitter end" according to Christof Koch.
Early life and education
Crick was the first son of Harry Crick and Annie Elizabeth Crick. He was born on 8 June 1916 and raised in Weston Favell, then a small village near the English town of Northampton, in which Crick's father and uncle ran the family's boot and shoe factory. His grandfather, Walter Drawbridge Crick, an amateur naturalist, wrote a survey of local foraminifera, corresponded with Charles Darwin, and had two gastropods named after him.At an early age, Francis was attracted to science and what he could learn about it from books. As a child, he was taken to church by his parents. But by about age 12, he said he did not want to go any more as he preferred a scientific search for answers over religious belief.
Walter Crick, his uncle, lived in a small house on the south side of Abington Avenue; he had a shed at the bottom of his little garden where he taught Crick to blow glass, do chemical experiments and to make photographic prints. When he was eight or nine he transferred to the most junior form of the Northampton Grammar School, on the Billing Road. This was about from his home so he could walk there and back, by Park Avenue South and Abington Park Crescent, but he more often went by bus or, later, by bicycle. The teaching in the higher forms was satisfactory, but not as stimulating. After the age of 14, he was educated at Mill Hill School in London, where he studied mathematics, physics, and chemistry with his best friend John Shilston. He shared the Walter Knox Prize for Chemistry on Mill Hill School's Foundation Day, Friday, 7 July 1933. He declared that his success was founded on the quality of teaching he received whilst a pupil at Mill Hill.
Crick studied at University College London, a constituent college of the University of London and earned a Bachelor of Science degree awarded by the University of London in 1937. Crick began a PhD at UCL, but was interrupted by World War II. He later became a PhD student and Honorary Fellow of Gonville and Caius College, Cambridge, and mainly worked at the Cavendish Laboratory and the Medical Research Council Laboratory of Molecular Biology in Cambridge. He was also an Honorary Fellow of Churchill College, Cambridge, and of University College London.
Crick began a PhD research project on measuring the viscosity of water at high temperatures in the laboratory of physicist Edward Neville da Costa Andrade at University College London, but with the outbreak of World War II, Crick was deflected from a possible career in physics. During his second year as a PhD student, however, he was awarded the Carey Foster Research Prize, a great honour. He did postdoctoral work at the Brooklyn Collegiate and Polytechnic Institute, now part of the New York University Tandon School of Engineering.
During World War II, he worked for the Admiralty Research Laboratory, from which many notable scientists emerged, including David Bates, Robert Boyd, Thomas Gaskell, George Deacon, John Gunn, Harrie Massey, and Nevill Mott; he worked on the design of magnetic and acoustic mines and was instrumental in designing a new mine that was effective against German minesweepers.
Post-World War II life and work
In 1947, aged 31, Crick began studying biology and became part of an important migration of physical scientists into biology research. This migration was made possible by the newly won influence of physicists such as Sir John Randall, who had helped win the war with inventions such as radar. Crick had to adjust from the "elegance and deep simplicity" of physics to the "elaborate chemical mechanisms that natural selection had evolved over billions of years." He described this transition as, "almost as if one had to be born again". According to Crick, the experience of learning physics had taught him something important—hubris—and the conviction that since physics was already a success, great advances should also be possible in other sciences such as biology. Crick felt that this attitude encouraged him to be more daring than typical biologists who tended to concern themselves with the daunting problems of biology and not the past successes of physics.For the better part of two years, Crick worked on the physical properties of cytoplasm at Cambridge's Strangeways Research Laboratory, headed by Honor Bridget Fell, with a Medical Research Council studentship, until he joined Max Perutz and John Kendrew at the Cavendish Laboratory. The Cavendish Laboratory at Cambridge was under the general direction of Sir Lawrence Bragg, who had won the Nobel Prize in 1915 at the age of 25. Bragg was influential in the effort to beat a leading American chemist, Linus Pauling, to the discovery of DNA's structure. At the same time Bragg's Cavendish Laboratory was also effectively competing with King's College London, whose Biophysics department was under the direction of Randall. Francis Crick and Maurice Wilkins of King's College were personal friends, which influenced subsequent scientific events as much as the close friendship between Crick and James Watson. Crick and Wilkins first met at King's College and not, as erroneously recorded by two authors, at the Admiralty during World War II.
Personal life
Crick married twice and fathered three children; his brother Anthony predeceased him in 1966.Spouses:
- Ruth Doreen Crick, née Dodd, who later married James Stewart Potter
- Odile Crick, née Speed
- Michael Francis Compton
- Gabrielle Anne
- Jacqueline Marie-Therese ;
Crick's Nobel Prize medal and diploma from the Nobel committee was sold at Heritage Auctions in June 2013 for $2,270,000. It was bought by Jack Wang, the CEO of Chinese medical company Biomobie. 20% of the sale price of the medal was donated to the Francis Crick Institute in London.
Research
Crick was interested in two fundamental unsolved problems of biology: how molecules make the transition from the non-living to the living, and how the brain makes a conscious mind. He realised that his background made him more qualified for research on the first topic and the field of biophysics. In 1946 Crick read Erwin Schrödinger's book, What Is Life? and was influenced by it, and Linus Pauling, to switch from physics to biology. It was clear in theory that covalent bonds in biological molecules could provide the structural stability needed to hold genetic information in cells. It only remained as an exercise of experimental biology to discover exactly which molecule was the genetic molecule. In Crick's view, Charles Darwin's theory of evolution by natural selection, Gregor Mendel's genetics and knowledge of the molecular basis of genetics, when combined, revealed the secret of life. Crick had the very optimistic view that life would very soon be created in a test tube. However, some people thought that Crick was unduly optimistic.It was clear that some macromolecule such as a protein was likely to be the genetic molecule. However, it was well known that proteins are structural and functional macromolecules, some of which carry out enzymatic reactions of cells. In the 1940s, some evidence had been found pointing to another macromolecule, DNA, the other major component of chromosomes, as a candidate genetic molecule. In the 1944 Avery-MacLeod-McCarty experiment, Oswald Avery and his collaborators showed that a heritable phenotypic difference could be caused in bacteria by providing them with a particular DNA molecule.
However, other evidence was interpreted as suggesting that DNA was structurally uninteresting and possibly just a molecular scaffold for the apparently more interesting protein molecules. Crick was in the right place, in the right frame of mind, at the right time, to join Max Perutz's project at the University of Cambridge, and he began to work on the X-ray crystallography of proteins. X-ray crystallography theoretically offered the opportunity to reveal the molecular structure of large molecules like proteins and DNA, but there were serious technical problems then preventing X-ray crystallography from being applicable to such large molecules.