James Hansen


James Edward Hansen is an American climatologist. He is an adjunct professor directing the Program on Climate Science, Awareness and Solutions of the Earth Institute at Columbia University. He is best known for his research in climatology, his 1988 Congressional testimony on climate change that helped raise broad awareness of global warming, and his advocacy of action to avoid dangerous climate change. In recent years, he has become a climate activist to mitigate the effects of global warming, on a few occasions leading to his arrest.
In 2000, Hansen had proposed an alternative scenario for combating the threat of global warming by focusing on reducing non-CO2 greenhouse gases. His estimates of global climate had found that non-CO2 GHGs caused more observed global warming than carbon dioxide. However, he pointed out that CO2 would become the dominant climate forcing, if global emissions continued to rise.

Early life and education

Hansen was born in Denison, Iowa, to James Ivan Hansen and Gladys Ray Hansen. He was trained in physics and astronomy in the space science program of James Van Allen at the University of Iowa. He obtained a B.A. in physics and mathematics with highest distinction in 1963, an M.S. in astronomy in 1965 and a Ph.D. in physics in 1967, all three degrees from the University of Iowa. He participated in the NASA graduate traineeship from 1962 to 1966 and, at the same time, between 1965 and 1966, he was a visiting student at the Institute of Astrophysics at Kyoto University and in the department of astronomy at the University of Tokyo. He then began work at the Goddard Institute for Space Studies in 1967.

Career

After graduate school, Hansen continued his work with radiative transfer models, attempting to understand the Venusian atmosphere. He later applied and refined these models to understand the Earth's atmosphere, and in particular, the effects that aerosols and trace gases have on Earth's climate. His development and use of global climate models has contributed to the further understanding of the Earth's climate. In 2009, his first book, Storms of My Grandchildren, was published. In 2012, he presented the TED Talk "Why I must speak out about climate change".
From 1981 to 2013, Hansen was the director of the NASA Goddard Institute for Space Studies in New York City, a part of the Goddard Space Flight Center.
, Hansen directs the Program on Climate Science, Awareness and Solutions at Columbia University's Earth Institute. The program is working to continue to "connect the dots" from advancing basic climate science to promoting public awareness to advocating policy actions.
Hansen represented his granddaughter as well as "future generations" as plaintiffs in the failed Juliana v. United States lawsuit against the United States government and some of its executive branch's positions for not protecting a stable climate system.

Research and publications

As a college student at the University of Iowa, Hansen was attracted to science and the research done by James Van Allen's space science program in the physics and astronomy department. A decade later, his focus shifted to planetary research that involved trying to understand the climate change on earth that will result from anthropogenic changes of the atmospheric composition.
Hansen has stated that one of his research interests is radiative transfer in planetary atmospheres, especially the interpretation of remote sensing of the Earth's atmosphere and surface from satellites. Because of the ability of satellites to monitor the entire globe, they may be one of the most effective ways to monitor and study global change. His other interests include the development of global circulation models to help understand the observed climate trends, and diagnosing human impacts on climate.

Studies of Venus

In the late 1960s and early 1970s, following his Ph.D. dissertation, Hansen published several papers on the planet Venus. Venus has a high brightness temperature in the radio frequencies compared to the infrared. He proposed that the hot surface was the result of aerosols trapping the internal energy of the planet. More recent studies have suggested that several billion years ago, Venus's atmosphere was much more like Earth's than it is now and that there were probably substantial quantities of liquid water on the surface, but a runaway greenhouse effect was caused by the evaporation of that original water, which generated a critical level of greenhouse gases in its atmosphere.
Hansen continued his study of Venus by looking at the composition of its clouds. He looked at the near-infrared reflectivity of ice clouds, compared them to observations of Venus, and found that they qualitatively agreed. He also was able to use a radiative transfer model to establish an upper limit to the size of the ice particles if the clouds were actually made of ice.
By 1974, the composition of Venus' clouds had not yet been determined, with many scientists proposing a wide variety of compounds, including liquid water and aqueous solutions of ferrous chloride. Hansen and Hovenier used the polarization of sunlight reflected from the planet to establish that the clouds were spherical and had a refractive index and cloud drop effective radius which eliminated all of the proposed cloud types except sulfuric acid. Kiyoshi Kawabata and Hansen expanded upon this work by looking at the variation of polarization on Venus. They found that the visible clouds are a diffuse haze rather than a thick cloud, confirming the same results obtained from transits across the sun.
The Pioneer Venus project was launched in May 1978 and reached Venus late that same year. Hansen collaborated with Larry Travis and other colleagues in a 1979 Science article that reported on the development and variability of clouds in the ultraviolet spectrum. They concluded that there are at least three different cloud materials that contribute to the images: a thin haze layer, sulfuric acid clouds and an unknown ultraviolet absorber below the sulfuric acid cloud layer. The linear polarization data obtained from the same mission confirmed that the low- and mid-level clouds were sulfuric acid with radius of about 1 micrometer. Above the cloud layer was a layer of submicrometre haze. Evidence published in the early 1980s showed that the clouds consist mainly of sulfur dioxide and sulfuric acid droplets.

Global temperature analysis

The first NASA Goddard Institute for Space Studies global temperature analysis was published in 1981. Hansen and his co-author analyzed the surface air temperature at meteorological stations focusing on the years from 1880 to 1985. Temperatures for stations closer together than 1000 kilometers were shown to be highly correlated, especially in the mid-latitudes, providing a way to combine the station data to provide accurate long-term variations. They concluded that global mean temperatures can be determined even though meteorological stations are typically in the Northern hemisphere and confined to continental regions. Warming in the past century was found to be, with warming similar in both hemispheres. When the analysis was updated in 1988, the four warmest years on record were all in the 1980s. The two warmest years were 1981 and 1987. During a senate meeting on June 23, 1988, Hansen reported that he was ninety-nine percent certain the earth was warmer then than at any time in the history of instrumental measurements, there was a clear cause and effect relationship with the greenhouse effect and lastly that due to global warming, the likelihood of freak weather was steadily increasing.
With the 1991 eruption of Mount Pinatubo, 1992 saw a cooling in global temperatures. There was speculation that this would cause the next couple of years to be cooler because of the large serial correlation in the global temperatures. Bassett and Lin found the statistical odds of a new temperature record to be small. Hansen countered by saying that having insider information shifted the odds to those who know the physics of the climate system, and that whether there is a new temperature record depends upon the particular data set used.
The temperature data was updated in 1999 to report that 1998 was the warmest year since the instrumental data began in 1880. They also found that the rate of temperature change was larger than at any time in instrument history, and concluded that the recent El Niño was not solely responsible for the large temperature anomaly in 1998. In spite of this, the United States had seen a smaller degree of warming, and a region in the eastern U.S. and the western Atlantic Ocean had actually cooled slightly.
2001 saw a major update to how the temperature was calculated. It incorporated corrections due to the following reasons: time-of-observation bias; station history changes; classification of rural/urban station; the urban adjustment based on satellite measurements of night light intensity, and relying more on rural station than urban. Evidence was found of local urban warming in urban, suburban and small-town records.
The anomalously high global temperature in 1998 due to El Niño resulted in a brief drop in subsequent years. However, a 2001 Hansen report in the journal Science states that global warming continues, and that the increasing temperatures should stimulate discussions on how to slow global warming. The temperature data was updated in 2006 to report that temperatures are now warmer than a century ago, and concluded that the recent global warming is a real climate change and not an artifact from the urban heat island effect. The regional variation of warming, with more warming in the higher latitudes, is further evidence of warming that is anthropogenic in origin.
In 2007, Stephen McIntyre notified GISS that many of the U.S. temperature records from the Historical Climatology Network displayed a discontinuity around the year 2000. NASA corrected the computer code used to process the data and credited McIntyre with pointing out the flaw. Hansen indicated that he felt that several news organizations had overreacted to this mistake. In 2010, Hansen published a paper entitled "Global Surface Temperature Change" describing current global temperature analysis.