James Van Allen
James Alfred Van Allen was an American space physicist at the University of Iowa. He was instrumental in establishing the field of magnetospheric research in space.
The Van Allen radiation belts were named after him, following his discovery using Geiger–Müller tube instruments on the 1958 satellites during the International Geophysical Year. Van Allen led the scientific community in putting scientific research instruments on space satellites.
Early years and education
James Van Allen was born on September 7, 1914, on a small farm near Mount Pleasant, Iowa. As a child, he was fascinated by mechanical and electrical devices and was an avid reader of Popular Mechanics and Popular Science magazines. He once horrified his mother by constructing a Tesla coil that produced foot-long sparks and caused his hair to stand on end.A fellowship allowed him to continue studying nuclear physics at the Carnegie Institution in Washington, D.C., where he also became immersed in research in geomagnetism, cosmic rays, auroral physics and the physics of Earth's upper atmosphere.
World War II
In August 1939, Van Allen joined the Department of Terrestrial Magnetism of the Carnegie Institution in Washington, D.C. as a Carnegie Research Fellow. In the summer of 1940, he joined DTM's national defense efforts with his appointment to a staff position in Section T with the National Defense Research Committee in Washington, D.C., where he worked on the development of photoelectric and radio proximity fuzes, which are detonators that increase the effectiveness of anti-aircraft fire. Another NDRC project later became the atomic bomb Manhattan Project in 1941. With the outbreak of World War II, the proximity fuze work was transferred to the newly created Applied Physics Laboratory of Johns Hopkins University in April 1942. He worked on improving the ruggedness of vacuum tubes subject to the vibration from a gun battery. The work at APL resulted in a new generation of radio-proximity fuses for anti-aircraft defense of ships and for shore bombardment.Van Allen was commissioned as a U.S. Navy lieutenant in November 1942 and served for 16 months on a succession of South Pacific Fleet destroyers, instructing gunnery officers and conducting tests on using the new and then strictly secret artillery fuses. He was an assistant staff gunnery officer on the battleship USS Washington when the ship successfully defended itself against a Japanese attack during the Battle of the Philippine Sea,. For his actions at the Pacific, Van Allen was awarded four battle stars. He was promoted to lieutenant commander in 1946. "My service as a naval officer was, far and away, the most broadening experience of my lifetime," he wrote in a 1990 autobiographical essay.
1946–1954 Aerobee and ''Rockoon''
Discharged from the Navy in 1946, Van Allen returned to civilian research at APL. He organized and directed a team at Johns Hopkins University to conduct high-altitude experiments, using V-2 rockets captured from the Germans at the end of World War II. Van Allen decided a small sounding rocket was needed for upper atmosphere research. The Aerojet WAC Corporal and the Bumblebee missile were developed under a US Navy program. He drew specifications for the Aerobee sounding rocket and headed the committee that convinced the U.S. government to produce it. The first instrument-carrying Aerobee was the A-5, launched on March 5, 1948, from White Sands, New Mexico, carrying instruments for cosmic radiation research, reaching an altitude of 117.5 km.Van Allen was elected chairman of the V-2 Upper Atmosphere Panel on December 29, 1947. The panel was renamed Upper Atmosphere Rocket Research Panel on March 18, 1948; then Rocket and Satellite Research Panel on April 29, 1948. The panel suspended operations on May 19, 1960, and had a reunion on February 2, 1968.
Cmdr. Lee Lewis, Cmdr. G. Halvorson, S.F. Singer, and James A. Van Allen developed the idea for the Rockoon on March 1, 1949, during the Aerobee rocket firing cruise on the research vessel USS Norton Sound.
On April 5, 1950, Van Allen left the Applied Physics Laboratory, to accept a John Simon Guggenheim Memorial Foundation research fellowship at the Brookhaven National Laboratory. The following year Van Allen accepted the position as head of the physics department at the University of Iowa. Before long, he was enlisting students in his efforts to discover the secrets of the wild blue yonder and inventing ways to carry instruments higher into the atmosphere than ever before. By 1952, Van Allen was the first to devise a balloon-rocket combination that lifted rockets on balloons high above most of the Earth's atmosphere before firing them even higher. The rockets were ignited after the balloons reached an altitude of 16 kilometers.
As Time magazine later reported, "Van Allen’s ‘Rockoons’ could not be fired in Iowa for fear that the spent rockets would strike an Iowan or his house." So Van Allen convinced the U.S. Coast Guard to let him fire his Rockoons from the icebreaker Eastwind that was bound for Greenland. "The first balloon rose properly to 70,000 ft., but the rocket hanging under it did not fire. The second Rockoon behaved in the same maddening way. On the theory that extreme cold at high altitude might have stopped the clockwork supposed to ignite the rockets, Van Allen heated cans of orange juice, smuggled them into the third Rockoon’s gondola, and wrapped the whole business in insulation. The rocket fired."
In 1953, the Rockoons and their science payloads fired off Newfoundland detected the first hint of radiation belts surrounding Earth. The low-cost Rockoon technique was later used by the Office of Naval Research and the University of Iowa research groups in 1953–1955 and 1957, from ships at sea between Boston and Thule, Greenland.
In 1954, in a private discussion about the Redstone project with Ernst Stuhlinger, Wernher von Braun expressed his belief that they should have a "real, honest-to-goodness scientist" involved in their little unofficial satellite project. Stuhlinger followed up with a visit to Van Allen at his home in Princeton, New Jersey, where Van Allen was on sabbatical leave from Iowa to work on stellarator design. Van Allen later recounted, "Stuhlinger’s 1954 message was simple and eloquent. By virtue of ballistic missile developments at Army Ballistic Missile Agency, it was realistic to expect that within a year or two a small scientific satellite could be propelled into a durable orbit around the earth.... I expressed a keen interest in performing a worldwide survey of the cosmic-ray intensity above the atmosphere."
International Geophysical Year 1957–58
In 1955, the U.S. announced Project Vanguard as part of the US contribution to the International Geophysical Year. Vanguard planned to launch an artificial satellite into an orbit around the Earth. It was to be run by the US Navy and developed from sounding rockets, which had the advantage of being primarily used for non-military scientific experiments.A symposium on "The Scientific Uses of Earth Satellites" was held on January 26 and 27, 1956 at the University of Michigan under sponsorship of the Upper Atmosphere Rocket Research Panel, chaired by Dr. Van Allen. 33 scientific proposals were presented for inclusion in the IGY satellites. Van Allen's presentation highlighted the use of satellites for continuing cosmic-ray investigations. At this same time his Iowa Group began preparations for scientific research instruments to be carried by 'Rockoons' and Vanguard for the International Geophysical Year. Through "preparedness and good fortune," as he later wrote, those scientific instruments were available for incorporation in the 1958 Explorer and Pioneer IGY launches.
- July 1, 1957: The International Geophysical Year begins. IGY is carried out by the International Council of Scientific Unions, over an 18-month period selected to match the period of maximum solar activity. Lloyd Berkner, one of the scientists at the April 5, 1950, Silver Spring, Maryland meeting in Van Allen's home, serves as president of the ICSU from 1957 to 1959.
- September 26, 1957: Thirty-six Rockoons were launched from Navy icebreaker USS Glacier in Atlantic, Pacific, and Antarctic areas ranging from 75° N. to 72° S. latitude, as part of the U.S. International Geophysical Year scientific program headed by Van Allen and Lawrence J. Cahill of The University of Iowa. These were the first known upper atmosphere rocket soundings in the Antarctic area. Launched from IGY Rockoon Launch Site 2, Atlantic Ocean; Latitude: 0.83° N, Longitude: 0.99° W.
- October 4, 1957: The Soviet Union successfully launches Sputnik 1, the world's first artificial satellite, as part of their participation in the IGY.
- January 31, 1958: The first American satellite, Explorer 1, was launched into Earth orbit on a Juno I four-stage booster rocket from Cape Canaveral, Florida. Aboard Explorer 1 were a micrometeorite detector and a cosmic ray experiment designed by Van Allen and his graduate students, with the satellite deployment of the sensor package supervised by Ernst Stuhlinger, who also had an expert cosmic ray background. Data from Explorer 1 and Explorer 3 were used by the Iowa group to make "the first space-age scientific discovery": "the existence of a doughnut-shaped region of charged particle radiation trapped by the Earth’s magnetic field".
- July 29, 1958: United States Congress passed the National Aeronautics and Space Act, which created the National Aeronautics and Space Administration as of October 1, 1958, from the National Advisory Committee for Aeronautics and other government agencies.
- December 6, 1958: Pioneer 3, the third intended U.S. International Geophysical Year probe under the direction of NASA with the Army acting as executive agent, was launched from the Atlantic Missile Range by a Juno II rocket. The primary objective of the flight, to place the 12.95 pound scientific payload in the vicinity of the Moon, failed. Pioneer III did reach an altitude of 63,000 miles, providing Van Allen additional data that led to discovery of a second radiation belt. Trapped radiation starts at an altitude of several hundred miles from Earth and extends for several thousand miles into space. The Van Allen radiation belts are named after Van Allen, their discoverer.