Halogen
The halogens are a group in the periodic table consisting of six chemically related elements: fluorine, chlorine, bromine, iodine, and the radioactive elements astatine and tennessine, though some authors would exclude tennessine as its chemistry is unknown and is theoretically expected to be more like that of gallium. In the modern IUPAC nomenclature, this group is known as group 17.
The word "halogen" means "salt former" or "salt maker". When halogens react with metals, they produce a wide range of salts, including calcium fluoride, sodium chloride, silver bromide, and potassium iodide.
The group of halogens is the only periodic table group that contains elements in three of the main states of matter at standard temperature and pressure, though not far above room temperature the same becomes true of groups 1 and 15, assuming white phosphorus is taken as the standard state. All of the halogens form acids when bonded to hydrogen. Most halogens are typically produced from minerals or salts. The middle halogens—chlorine, bromine, and iodine—are often used as disinfectants. Organobromides are the most important class of flame retardants, while elemental halogens are dangerous and can be toxic.
History
The fluorine mineral fluorspar was known as early as 1529. Early chemists realized that fluorine compounds contain an undiscovered element, but were unable to isolate it. In 1869, George Gore, an English chemist, ran a current of electricity through hydrofluoric acid and probably produced fluorine, but he was unable to prove his results at the time. In 1886, Henri Moissan, a chemist in Paris, performed electrolysis on potassium bifluoride dissolved in anhydrous hydrogen fluoride, and successfully isolated fluorine.Hydrochloric acid was known to alchemists and early chemists. However, elemental chlorine was not produced until 1774, when Carl Wilhelm Scheele heated hydrochloric acid with manganese dioxide. Scheele called the element "dephlogisticated muriatic acid", which is how chlorine was known for 33 years. In 1807, Humphry Davy investigated chlorine and discovered that it is an actual element. Chlorine gas was used as a poisonous gas during World War I. It displaced oxygen in contaminated areas and replaced common oxygenated air with the toxic chlorine gas. The gas would burn human tissue externally and internally, especially the lungs, making breathing difficult or impossible depending on the level of contamination.
Bromine was discovered in the 1820s by Antoine Jérôme Balard. Balard discovered bromine by passing chlorine gas through a sample of brine. He originally proposed the name muride for the new element, but the French Academy changed the element's name to bromine.
Iodine was discovered by Bernard Courtois, who was using seaweed ash as part of a process for saltpeter manufacture. Courtois typically boiled the seaweed ash with water to generate potassium chloride. However, in 1811, Courtois added sulfuric acid to his process and found that his process produced purple fumes that condensed into black crystals. Suspecting that these crystals were a new element, Courtois sent samples to other chemists for investigation. Iodine was proven to be a new element by Joseph Gay-Lussac.
In 1931, Fred Allison claimed to have discovered element 85 with a magneto-optical machine, and named the element Alabamine, but was mistaken. In 1937, Rajendralal De claimed to have discovered element 85 in minerals, and called the element dakine, but he was also mistaken. An attempt at discovering element 85 in 1939 by Horia Hulubei and Yvette Cauchois via spectroscopy was also unsuccessful, as was an attempt in the same year by Walter Minder, who discovered an iodine-like element resulting from beta decay of polonium. Element 85, now named astatine, was produced successfully in 1940 by Dale R. Corson, K.R. Mackenzie, and Emilio G. Segrè, who bombarded bismuth with alpha particles.
In 2010, a team led by nuclear physicist Yuri Oganessian involving scientists from the JINR, Oak Ridge National Laboratory, Lawrence Livermore National Laboratory, and Vanderbilt University successfully bombarded berkelium-249 atoms with calcium-48 atoms to make tennessine.
Etymology
In 1811, the German chemist Johann Schweigger proposed that the name "halogen" – meaning "salt producer", from αλς "salt" and γενειν "to beget" – replace the name "chlorine", which had been proposed by the English chemist Humphry Davy. Davy's name for the element prevailed. However, in 1826, the Swedish chemist Baron Jöns Jacob Berzelius proposed the term "halogen" for the elements fluorine, chlorine, and iodine, which produce a sea-salt-like substance when they form a compound with an alkaline metal.The English names of these elements all have the ending -ine. Fluorine's name comes from the Latin word fluere, meaning "to flow", because it was derived from the mineral fluorite, which was used as a flux in metalworking. Chlorine's name comes from the Greek word chloros, meaning "greenish-yellow". Bromine's name comes from the Greek word bromos, meaning "stench". Iodine's name comes from the Greek word iodes, meaning "violet". Astatine's name comes from the Greek word astatos, meaning "unstable". Tennessine is named after the US state of Tennessee, where it was synthesized.
Characteristics
Chemical
The halogens fluorine, chlorine, bromine, and iodine are nonmetals; the chemical properties of astatine and tennessine, two heaviest group 17 members, have not been conclusively investigated. The halogens show trends in chemical bond energy moving from top to bottom of the periodic table column with fluorine deviating slightly. It follows a trend in having the highest bond energy in compounds with other atoms, but it has very weak bonds within the diatomic F2 molecule. This means that further down group 17 in the periodic table, the reactivity of elements decreases because of the increasing size of the atoms.| X | X2 | HX | BX3 | AlX3 | CX4 |
| F | 159 | 574 | 645 | 582 | 456 |
| Cl | 243 | 428 | 444 | 427 | 327 |
| Br | 193 | 363 | 368 | 360 | 272 |
| I | 151 | 294 | 272 | 285 | 239 |
Halogens are highly reactive, and as such can be harmful or lethal to biological organisms in sufficient quantities. This high reactivity is due to the high electronegativity of the atoms due to their high effective nuclear charge. Because the halogens have seven valence electrons in their outermost energy level, they can gain an electron by reacting with atoms of other elements to satisfy the octet rule. Fluorine is the most reactive of all elements; it is the only element more electronegative than oxygen, it attacks otherwise-inert materials such as glass, and it forms compounds with the usually inert noble gases. It is a corrosive and highly toxic gas. The reactivity of fluorine is such that, if used or stored in laboratory glassware, it can react with glass in the presence of small amounts of water to form silicon tetrafluoride. Thus, fluorine must be handled with substances such as Teflon, extremely dry glass, or metals such as copper or steel, which form a protective layer of fluoride on their surface.
The high reactivity of fluorine allows some of the strongest bonds possible, especially to carbon. For example, Teflon is fluorine bonded with carbon and is extremely resistant to thermal and chemical attacks and has a high melting point.
Molecules
Diatomic halogen molecules
The stable halogens form homonuclear diatomic molecules.Due to relatively weak intermolecular forces, chlorine and fluorine form part of the group known as "elemental gases".
| halogen | molecule | structure | model | d / pm | d / pm |
| fluorine | F2 | Image:Difluorine-2D-dimensions.png|class=skin-invert|45px | 45px | 143 | 149 |
| chlorine | Cl2 | Image:Dichlorine-2D-dimensions.png|class=skin-invert|70px | 63px | 199 | 198 |
| bromine | Br2 | Image:Dibromine-2D-dimensions.png|class=skin-invert|80px | 72px | 228 | 227 |
| iodine | I2 | Image:Diiodine-2D-dimensions.png|class=skin-invert|70px | 84px | 266 | 272 |
The elements become less reactive and have higher melting points as the atomic number increases. The higher melting points are caused by stronger London dispersion forces resulting from more electrons.
Compounds
Hydrogen halides
All of the halogens have been observed to react with hydrogen to form hydrogen halides. For fluorine, chlorine, and bromine, this reaction is in the form of:However, hydrogen iodide and hydrogen astatide can split back into their constituent elements.
The hydrogen-halogen reactions get gradually less reactive toward the heavier halogens. A fluorine-hydrogen reaction is explosive even when it is dark and cold. A chlorine-hydrogen reaction is also explosive, but only in the presence of light and heat. A bromine-hydrogen reaction is even less explosive; it is explosive only when exposed to flames. Iodine and astatine only partially react with hydrogen, forming equilibria.
All halogens form binary compounds with hydrogen known as the hydrogen halides: hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide, and hydrogen astatide. All of these compounds form acids when mixed with water. Hydrogen fluoride is the only hydrogen halide that forms hydrogen bonds. Hydrochloric acid, hydrobromic acid, hydroiodic acid, and acid are all strong acids, but hydrofluoric acid is a weak acid.
All of the hydrogen halides are irritants. Hydrogen fluoride and hydrogen chloride are highly acidic. Hydrogen fluoride is used as an industrial chemical, and is highly toxic, causing pulmonary edema and damaging cells. Hydrogen chloride is also a dangerous chemical. Breathing in gas with more than fifty parts per million of hydrogen chloride can cause death in humans. Hydrogen bromide is even more toxic and irritating than hydrogen chloride. Breathing in gas with more than thirty parts per million of hydrogen bromide can be lethal to humans. Hydrogen iodide, like other hydrogen halides, is toxic.