Natural gas


Natural gas is a naturally occurring mixture composed of gaseous hydrocarbons, primarily methane, small amounts of higher alkanes, and traces of carbon dioxide and nitrogen, hydrogen sulfide and helium. Methane is a colorless and odorless gas, and, after carbon dioxide, is the second-greatest greenhouse gas that contributes to global climate change. Because natural gas is odorless, a commercial odorizer, such as methanethiol, that smells of hydrogen sulfide is added to the gas for the ready detection of gas leaks.
Natural gas is a fossil fuel that is formed when layers of organic matter are thermally decomposed under oxygen-free conditions, subjected to intense heat and pressure underground over millions of years. The energy that the decayed organisms originally obtained from the sun via photosynthesis is stored as chemical energy within the molecules of methane and other hydrocarbons.
Natural gas can be burned for heating, cooking, and electricity generation. Whereas incomplete combustion of methane can produce soot with a temperature sufficient to incandesce, its complete combustion yields the characteristic blue flame of gas stoves via luminescence, as can be demonstrated by adjusting a Bunsen burner. Consisting mainly of methane, natural gas is rarely used as a chemical feedstock.
The extraction and consumption of natural gas is a major industry. When burned for heat or electricity, natural gas emits fewer toxic air pollutants, less carbon dioxide, and almost no particulate matter compared to other fossil fuels. However, gas venting and unintended fugitive emissions throughout the supply chain can result in natural gas having a similar carbon footprint to other fossil fuels overall.
Natural gas can be found in underground geological formations, often alongside other fossil fuels like coal and oil. Most natural gas has been created through either biogenic or thermogenic processes. Thermogenic gas takes a much longer period of time to form and is created when organic matter is heated and compressed deep underground. Methanogenic organisms produce methane from a variety of sources, principally carbon dioxide.
During petroleum production, natural gas is sometimes flared rather than being collected and used. Before natural gas can be burned as a fuel or used in manufacturing processes, it almost always has to be processed to remove impurities such as water. The byproducts of this processing include ethane, propane, butanes, pentanes, and higher molecular weight hydrocarbons. Hydrogen sulfide, carbon dioxide, water vapor, and sometimes helium and nitrogen must also be removed.
Natural gas is sometimes informally referred to simply as "gas", especially when it is being compared to other energy sources, such as oil, coal or renewables. However, it is not to be confused with gasoline, which is also shortened in colloquial usage to "gas", especially in North America.
Natural gas is measured in standard cubic meters or standard cubic feet. The density compared to air ranges from 0.58 to as high as 0.79, but generally less than 0.64. For comparison, pure methane has a density 0.5539 times that of air.

Name

In the early 1800s, natural gas became known as "natural" to distinguish it from the dominant gas fuel at the time, coal gas. Unlike coal gas, which is manufactured by heating coal, natural gas can be extracted from the ground in its native gaseous form. When the use of natural gas overtook the use of coal gas in English speaking countries in the 20th century, it was increasingly referred to as simply "gas." In order to highlight its role in exacerbating the climate crisis, however, many organizations have criticized the continued use of the word "natural" in referring to the gas. These advocates prefer the term "fossil gas" or "methane gas" as better conveying to the public its climate threat. A 2020 study of Americans' perceptions of the fuel found that, across political identifications, the term "methane gas" led to better estimates of its harms and risks.

History

Natural gas can come out of the ground and cause a long-burning fire. In ancient Greece, the gas flames at Mount Chimaera contributed to the legend of the fire-breathing creature Chimera. In ancient China, gas resulting from the drilling for brines was first used by about 400 BC. The Chinese transported gas seeping from the ground in crude pipelines of bamboo to where it was used to boil salt water to extract the salt in the Ziliujing District of Sichuan.
Natural gas was not widely used before the development of long distance pipelines in the early 20th century. Before that, most use was near to the source of the well, and the predominant gas for fuel and lighting during the industrial revolution was manufactured coal gas.
The history of natural gas in the United States begins with localized use. In the seventeenth century, French missionaries witnessed the American Indians setting fire to natural gas seeps around Lake Erie, and scattered observations of these seeps were made by European-descended settlers throughout the eastern seaboard through the 1700s. In 1821, William Hart dug the first commercial natural gas well in the United States at Fredonia, New York, United States, which led in 1858 to the formation of the Fredonia Gas Light Company. Further such ventures followed near wells in other states, until technological innovations allowed the growth of major long distance pipelines from the 1920s onwards.
By 2010, had been used out of the total of estimated remaining recoverable reserves of natural gas.

Natural gas

In the 19th century, natural gas was primarily obtained as a by-product of producing oil. The small, light gas carbon chains came out of solution as the extracted fluids underwent pressure reduction from the reservoir to the surface, similar to uncapping a soft drink bottle where the carbon dioxide effervesces. The gas was often viewed as a by-product, a hazard, and a disposal problem in active oil fields. The large volumes produced could not be used until relatively expensive pipeline and storage facilities were constructed to deliver the gas to consumer markets.
Until the early part of the 20th century, most natural gas associated with oil was either simply released or burned off at oil fields. Gas venting and production flaring are still practiced in modern times, but efforts are ongoing around the world to retire them, and to replace them with other commercially viable and useful alternatives.
In addition to transporting gas via pipelines for use in power generation, other end uses for natural gas include export as liquefied natural gas or conversion of natural gas into other liquid products via gas to liquids technologies. GTL technologies can convert natural gas into liquids products such as gasoline, diesel or jet fuel. A variety of GTL technologies have been developed, including Fischer–Tropsch, methanol to gasoline and syngas to gasoline plus. F–T produces a synthetic crude that can be further refined into finished products, while MTG can produce synthetic gasoline from natural gas. STG+ can produce drop-in gasoline, diesel, jet fuel and aromatic chemicals directly from natural gas via a single-loop process. In 2011, Royal Dutch Shell's per day F–T plant went into operation in Qatar.
Natural gas can be "associated", or "non-associated", and is also found in coal beds. It sometimes contains a significant amount of ethane, propane, butane, and pentane—heavier hydrocarbons removed for commercial use prior to the methane being sold as a consumer fuel or chemical plant feedstock. Non-hydrocarbons such as carbon dioxide, nitrogen, helium, and hydrogen sulfide must also be removed before the natural gas can be transported.
Natural gas extracted from oil wells is called casinghead gas or associated gas. The natural gas industry is extracting an increasing quantity of gas from challenging, unconventional resource types: sour gas, tight gas, shale gas, and coalbed methane.
There is some disagreement on which country has the largest proven gas reserves. Sources that consider that Russia has by far the largest proven reserves include the US Central Intelligence Agency and Energy Information Administration, as well as the Organization of Petroleum Exporting Countries. Contrarily, BP credits Russia with only 32,900 km3, which would place it in second, slightly behind Iran.
It is estimated that there are about 900,000 km3 of "unconventional" gas such as shale gas, of which 180,000 km3 may be recoverable. In turn, many studies from MIT, Black & Veatch and the US Department of Energy predict that natural gas will account for a larger portion of electricity generation and heat in the future.
The world's largest gas field is the offshore South Pars/North Dome Gas-Condensate field, shared between Iran and Qatar. It is estimated to have of natural gas and of natural gas condensates.
Because natural gas is not a pure product, as the reservoir pressure drops when non-associated gas is extracted from a field under supercritical conditions, the higher molecular weight components may partially condense upon isothermic depressurizing—an effect called retrograde condensation. The liquid thus formed may get trapped as the pores of the gas reservoir get depleted. One method to deal with this problem is to re-inject dried gas free of condensate to maintain the underground pressure and to allow re-evaporation and extraction of condensates. More frequently, the liquid condenses at the surface, and one of the tasks of the gas plant is to collect this condensate. The resulting liquid is called natural gas liquid and has commercial value.

Shale gas

Shale gas is natural gas produced from shale. Because shale's matrix permeability is too low to allow gas to flow in economical quantities, shale gas wells depend on fractures to allow the gas to flow. Early shale gas wells depended on natural fractures through which gas flowed; almost all shale gas wells today require fractures artificially created by hydraulic fracturing. Since 2000, shale gas has become a major source of natural gas in the United States and Canada. Because of increased shale gas production the United States was in 2014 the number one natural gas producer in the world. The production of shale gas in the United States has been described as a "shale gas revolution" and as "one of the landmark events in the 21st century."
Following the increased production in the United States, shale gas exploration is beginning in countries such as Poland, China, and South Africa. Chinese geologists have identified the Sichuan Basin as a promising target for shale gas drilling, because of the similarity of shales to those that have proven productive in the United States. Production from the Wei-201 well is between 10,000 and 20,000 m3 per day. In late 2020, China National Petroleum Corporation claimed daily production of 20 million cubic meters of gas from its Changning-Weiyuan demonstration zone.