Geographic information system


A geographic information system consists of integrated computer hardware and software that store, manage, analyze, edit, output, and visualize geographic data. Much of this often happens within a spatial database; however, this is not essential to meet the definition of a GIS. In a broader sense, one may consider such a system also to include human users and support staff, procedures and workflows, the body of knowledge of relevant concepts and methods, and institutional organizations.
The uncounted plural, geographic information systems, also abbreviated GIS, is the most common term for the industry and profession concerned with these systems. The academic discipline that studies these systems and their underlying geographic principles, may also be abbreviated as GIS, but the unambiguous GIScience is more common. GIScience is often considered a subdiscipline of geography within the branch of technical geography.
Geographic information systems are used in multiple technologies, processes, techniques and methods. They are attached to various operations and numerous applications, that relate to: engineering, planning, management, transport/logistics, insurance, telecommunications, and business, as well as the natural sciences such as forestry, ecology, and Earth science. For this reason, GIS and location intelligence applications are at the foundation of location-enabled services, which rely on geographic analysis and visualization.
GIS provides the ability to relate previously unrelated information, through the use of location as the "key index variable". Locations and extents that are found in the Earth's spacetime are able to be recorded through the date and time of occurrence, along with x, y, and z coordinates; representing, longitude, latitude, and elevation. All Earth-based, spatial–temporal, location and extent references should be relatable to one another, and ultimately, to a "real" physical location or extent. This key characteristic of GIS has begun to open new avenues of scientific inquiry and studies.

History and development

While digital GIS dates to the mid-1960s, when Roger Tomlinson first coined the phrase "geographic information system", many of the geographic concepts and methods that GIS automates date back decades earlier.
File:Snow-cholera-map.jpg|thumb|right|300px|E. W. Gilbert's version of John Snow's 1855 map of the Soho cholera outbreak showing the clusters of cholera cases in the London epidemic of 1854
One of the first known instances in which spatial analysis was used came from the field of epidemiology in the Rapport sur la marche et les effets du choléra dans Paris et le département de la Seine. French cartographer and geographer Charles Picquet created a map outlining the forty-eight districts in Paris, using halftone color gradients, to provide a visual representation for the number of reported deaths due to cholera per every 1,000 inhabitants.
In 1854, John Snow, an epidemiologist and physician, was able to determine the source of a cholera outbreak in London through the use of spatial analysis. Snow achieved this through plotting the residence of each casualty on a map of the area, as well as the nearby water sources. Once these points were marked, he was able to identify the water source within the cluster that was responsible for the outbreak. This was one of the earliest successful uses of a geographic methodology in pinpointing the source of an outbreak in epidemiology. While the basic elements of topography and theme existed previously in cartography, Snow's map was unique due to his use of cartographic methods, not only to depict, but also to analyze clusters of geographically dependent phenomena.
The early 20th century saw the development of photozincography, which allowed maps to be split into layers, for example one layer for vegetation and another for water. This was particularly used for printing contours – drawing these was a labour-intensive task but having them on a separate layer meant they could be worked on without the other layers to confuse the draughtsman. This work was initially drawn on glass plates, but later plastic film was introduced, with the advantages of being lighter, using less storage space and being less brittle, among others. When all the layers were finished, they were combined into one image using a large process camera. Once color printing came in, the layers idea was also used for creating separate printing plates for each color. While the use of layers much later became one of the typical features of a contemporary GIS, the photographic process just described is not considered a GIS in itself – as the maps were just images with no database to link them to.
Two additional developments are notable in the early days of GIS: Ian McHarg's publication Design with Nature and its map overlay method and the introduction of a street network into the U.S. Census Bureau's DIME system.
The first publication detailing the use of computers to facilitate cartography was written by Waldo Tobler in 1959. Further computer hardware development spurred by nuclear weapon research led to more widespread general-purpose computer "mapping" applications by the early 1960s.
In 1963, the world's first true operational GIS was developed in Ottawa, Ontario, Canada, by the federal Department of Forestry and Rural Development. Developed by Roger Tomlinson, it was called the Canada Geographic Information System and was used to store, analyze, and manipulate data collected for the Canada Land Inventory, an effort to determine the land capability for rural Canada by mapping information about soils, agriculture, recreation, wildlife, waterfowl, forestry and land use at a scale of 1:50,000. A rating classification factor was also added to permit analysis.
CGIS was an improvement over "computer mapping" applications as it provided capabilities for data storage, overlay, measurement, and digitizing/scanning. It supported a national coordinate system that spanned the continent, coded lines as arcs having a true embedded topology and it stored the attribute and locational information in separate files. As a result of this, Tomlinson has become known as the "father of GIS", particularly for his use of overlays in promoting the spatial analysis of convergent geographic data. CGIS lasted into the 1990s and built a large digital land resource database in Canada. It was developed as a mainframe-based system in support of federal and provincial resource planning and management. Its strength was continent-wide analysis of complex datasets. The CGIS was never available commercially.
In 1964, Howard T. Fisher formed the Laboratory for Computer Graphics and Spatial Analysis at the Harvard Graduate School of Design, where a number of important theoretical concepts in spatial data handling were developed, and which by the 1970s had distributed seminal software code and systems, such as SYMAP, GRID, and ODYSSEY, to universities, research centers and corporations worldwide. These programs were the first examples of general-purpose GIS software that was not developed for a particular installation, and was very influential on future commercial software, such as Esri ARC/INFO, released in 1983.
Working in the Harvard Lab, Tom Waugh developed his vector-based Geographic Information Mapping and Manipulation System software from 1969. He returned to the University of Edinburgh and this software was sold commercially from 1973. By 1977 it was used at 300 sites worldwide. This can be considered the first globally used GIS which anticipated some key characteristics of the Harvard Odyssey system by nearly five years and ARC/INFO by a decade.
By the late 1970s, two public domain GIS systems were in development, and by the early 1980s, M&S Computing along with Bentley Systems Incorporated for the CAD platform, Environmental Systems Research Institute, CARIS , and ERDAS emerged as commercial vendors of GIS software, successfully incorporating many of the CGIS features, combining the first-generation approach to separation of spatial and attribute information with a second-generation approach to organizing attribute data into database structures.
In 1986, Mapping Display and Analysis System, the first desktop GIS product, was released for MS-DOS. It was renamed in 1990 to MapInfo for Windows when it was ported to Windows. This began the process of moving GIS from the research department into the business environment.
By the end of the 20th century, the rapid growth in various systems had been consolidated and standardized on relatively few platforms and users were beginning to explore viewing GIS data over the Internet, requiring data format and transfer standards. More recently, a growing number of free, open-source GIS packages run on a range of operating systems and can be customized to perform specific tasks. The major trend of the 21st century has been the integration of GIS capabilities with other Information technology and Internet infrastructure, such as relational databases, cloud computing, software as a service, and mobile computing.

GIS software

The distinction must be made between a singular geographic information system, which is a single installation of software and data for a particular use, along with associated hardware, staff, and institutions ; and GIS software, a general-purpose application program that is intended to be used in many individual geographic information systems in a variety of application domains. Starting in the late 1970s, many software packages have been created specifically for GIS applications. Esri's ArcGIS, which includes ArcGIS Pro and the legacy software ArcMap, currently dominates the GIS market. Other examples of GIS include Autodesk and MapInfo Professional and open-source programs such as QGIS, GRASS GIS, MapGuide, and Hadoop-GIS. These and other desktop GIS applications include a full suite of capabilities for entering, managing, analyzing, and visualizing geographic data, and are designed to be used on their own.
Starting in the late 1990s with the emergence of the Internet, as computer network technology progressed, GIS infrastructure and data began to move to servers, providing another mechanism for providing GIS capabilities. This was facilitated by standalone software installed on a server, similar to other server software such as HTTP servers and relational database management systems, enabling clients to have access to GIS data and processing tools without having to install specialized desktop software. These networks are known as distributed GIS. This strategy has been extended through the Internet and development of cloud-based GIS platforms such as ArcGIS Online and GIS-specialized software as a service. The use of the Internet to facilitate distributed GIS is known as Internet GIS.
An alternative approach is the integration of some or all of these capabilities into other software or information technology architectures. One example is a spatial extension to Object-relational database software, which defines a geometry datatype so that spatial data can be stored in relational tables, and extensions to SQL for spatial analysis operations such as overlay. Another example is the proliferation of geospatial libraries and application programming interfaces that extend programming languages to enable the incorporation of GIS data and processing into custom software, including web mapping sites and location-based services in smartphones.