Spatial cognition
In cognitive psychology, spatial cognition is the acquisition, organization, utilization, and revision of knowledge about spatial environments. It is most about how animals, including humans, behave within space and the knowledge they built around it, rather than space itself. These capabilities enable individuals to manage basic and high-level cognitive tasks in everyday life. Numerous disciplines work together to understand spatial cognition in different species, especially in humans. Thereby, spatial cognition studies also have helped to link cognitive psychology and neuroscience. Scientists in both fields work together to figure out what role spatial cognition plays in the brain as well as to determine the surrounding neurobiological infrastructure.
In humans, spatial cognition is closely related to how people talk about their environment, find their way in new surroundings, and plan routes. Thus a wide range of studies is based on participants reports, performance measures and similar, for example in order to determine cognitive reference frames that allow subjects to perform. In this context the implementation of virtual reality becomes more and more widespread among researchers, since it offers the opportunity to confront participants with unknown environments in a highly controlled manner.
Spatial cognition can be seen from a psychological point of view, meaning that people's behaviour within that space is key. When people behave in space, they use cognitive maps, the most evolved form of spatial cognition. When using cognitive maps, information about landmarks and the routes between landmarks are stored and used. This knowledge can be built from various sources; from a tightly coordinated vision and locomotion, but also from map symbols, verbal descriptions, and computer-based pointing systems. According to Montello, space is implicitly referring to a person's body and their associated actions. He mentions different kinds of space; figural space which is a space smaller than the body, vista space which the space is more extended than the human body, environmental space which is learned by locomotion, and geographical space which is the biggest space and can only be learned through cartographic representation.
Space is represented in the human brain, this can also lead to distortions. When perceiving space and distance, a distortion can occur. Distances are perceived differently on whether they are considered between a given location and a location that has a high cognitive saliency, meaning that it stands out. Different perceived locations and distances can have a "reference point", which are better known than others, more frequently visited and more visible. There are other kinds of distortions as well. Furthermore, there the distortion in distance estimation and the distortion in angle alignment. Distortion in angle alignment means that your personal north will be viewed as "the north". The map is mentally represented according to the orientation of the personal point of view of learning. Since perceived distortion is "subjective" and not necessarily correlated with "objective distance", distortions can happen in this phenomenon too. There can be an overestimation in downtown routes, routes with turns, curved routes and borders or obstacles.
Spatial knowledge
A classical approach to the acquisition of spatial knowledge, proposed by Siegel & White in 1975, defines three types of spatial knowledge – landmarks, route knowledge and survey knowledge – and draws a picture of these three as stepstones in a successive development of spatial knowledge.Within this framework, landmarks can be understood as salient objects in the environment of an actor, which are memorized without information about any metric relations at first. By traveling between landmarks, route knowledge evolves, which can be seen as sequential information about the space which connects landmarks. Finally, increased familiarity with an environment allows the development of so-called survey knowledge, which integrates both landmarks and routes and relates it to a fixed coordinate system, i.e. in terms of metric relations and alignment to absolute categories like compass bearings etc. This results in abilities like taking shortcuts never taken before, for example.
More recently, newer findings challenged this stairway-like model of acquisition of spatial knowledge. Whereas familiarity with an environment seems to be a crucial predictor of navigational performance indeed, in many cases even survey knowledge can be established after minimal exploration of a new environment.
In this context, Daniel R. Montello proposed a new framework, indicating, that the changes in spatial knowledge ongoing with growing experience are rather quantitative than qualitative, i. e. different types of spatial knowledge become just more precise and confident. Furthermore, the use of these different types seems to be predominantly task-dependent, which leads to the conclusion that spatial navigation in everyday life requires multiple strategies with different emphasis on landmarks, routes and overall survey knowledge.
Space classification
The space can be classified according to its extension as proposed by Montello, distinguishing between figural space, vista space, environmental space and geographical space. Figural space is the first and most restricted space that refers to the area that a person's body covers without any movement, including objects that can be easily reached. Vista space is the second subspace that refers to the space beyond the body but that is still close enough to be completely visualized without moving, for example, a room. Environmental space is the third subspace which is said to "contain" the body because of its large size and can only be fully explored through movement since all objects and space are not directly visible, like in a city. Environmental space is the most relevant subspace to humans for navigation because they best allow for movement throughout space in order to understand our environment. Geographical space is the last level because it is so large that it can not be explored through movement alone and can only be fully understood through cartographic representations which can illustrate an entire continent on a map.Individual differences
There are also individual differences when it comes to experiencing space and the spatial cognition that people have. When looking at individual differences, it appears that most people have a preference for one reference frame with a different use of strategies to represent space. Some people have an inclination towards a route view, while others have a preference towards a survey view. The people that prefer a route perspective also tend to describe a space more in an egocentric frame of reference. People who have an inclination towards a survey perspective also tend to use an allocentric frame of reference more often. It has been observed that the latter perform better in navigational tasks when they have to learn a route from a map. These individual differences are self-reported with questionnaires.However, the perspective choice is also influenced by characteristics of the environment. When there is a single path in the environment, people usually choose to employ a route perspective. When the environment is open and filled with landmarks, however, people tend to choose a survey perspective.
In this context, a discussion came up about different reference frames, which are the frameworks wherein spatial information is encoded. In general, two of them can be distinguished as the egocentric and the allocentric reference frame.
Within an egocentric reference frame, spatial information is encoded in terms of relations to the physical body of a navigator, whereas the allocentric reference frame defines relations of objects among each other, that is independent of the physical body of an "observer" and thus in a more absolute way, which takes metrical conditions and general alignments like cardinal directions into account. This suggests, that route knowledge, which is supported by direct navigation, is more likely to be encoded within an egocentric reference frame and survey knowledge, which is supported by map learning, to be more likely to be encoded within an allocentric reference frame in turn. Furthermore, an interaction between egocentric and allocentric view is possible. This combination is mostly used when imagining a spatial environment, and this creates a richer representation of the environment. However, when a perspective that has not yet been discovered, it is more demanding to use this technique.
Distortion
As there are biases in other topics of psychology, there are also biases within the concept of spatial cognition. People make systematic errors when they utilize or try to retain information from spatial representations of the environment, such as geographic maps. This shows that their mental representation of the maps and the knowledge they reflect are systematically distorted. Distortions are repetitive errors that people show in their cognitive maps when they are asked to estimate distances or angles. When an organism’s natural spatial perception is harmed, spatial distortion arises. This can be created experimentally in a variety of sensory modalities. Different types of distortions exist.First of all, people tend to make errors when it comes to estimating a distance. When compared to their true measurements on a curved surface of the globe, there is a misconception of shape, size, distance, or direction between geographical landmarks. This appears to happen because you cannot display 3D surfaces into two perfect dimensions. People tend to regularize their cognitive maps by distorting the position of relatively small features to make them conform with the position of larger features. Our route lengths tend to be overestimated, routes with major bends and curves are estimated longer than lineair routes. When interpreting the geographical relationships between two locations that are in separate geographical or political entities, people make enormous systematic errors. The presence of a border, physical as well as emotional, contributes to biases in estimating distances between elements. People tend to overestimate the distance between two cities that belonged to two different regions or countries. The distortion of distance might also be caused by the presence of salient landmarks. Some environmental features are not cognitively equal; some may be larger, older, more well-known or more central in our daily life activities. These landmarks are frequently used as reference elements for less salient elements. When one element in a location is more salient, the distance between the reference point and the other point is estimated as shorter.
Second, there is a distortion when it comes to alignment. Alignment means arrangement in a straight line. When objects are aligned with each other it is much easier to estimate the distance between these objects and to switch between different egocentric viewpoints of both objects. When a mental representation of any spatial environment needs to be created, people tend to have way more errors when the object in a spatial environment are not aligned with one another. This is especially the case when the different objects are memorized separately. When a person sees an object, there will be less errors in spatial cognition when the placement of this object is facing the person's egocentric north. The performance within spatial cognition is the best when the orientation is north-facing and decreases linearly with the angle of misalignment.
Finally, the angle in which an object is placed in relation to another object, plays a major role in having distortions when it comes to spatial cognition. The amount of angular errors increased significantly when the angle between two objects exceeds 90 degrees. This phenomenon occurs in all age groups, e.g. younger, middle-aged and older adults. When an angle is unknown and has to be estimated, people tend to guess close to 90 degrees. Besides that, the angular error also increases when the object or place towards which we are pointing is further away from our egocentric space. Familiarity plays an important role. Pointing errors are less towards places that are familiar than towards unfamiliar places. When people have to use their spatial memory to guess an angle, forward errors are significantly smaller than backward errors, implying that memorizing the opposite direction is more difficult than memorizing the forward direction of travel.