Facial recognition system
A facial recognition system is a technology potentially capable of matching a human face from a digital image or a video frame against a database of faces. Such a system is typically employed to authenticate users through ID verification services, and works by pinpointing and measuring facial features from a given image.
Development on similar systems began in the 1960s as a form of computer application. Since their inception, facial recognition systems have seen wider uses in recent times on smartphones and in other forms of technology, such as robotics. Because computerized facial recognition involves the measurement of a human's physiological characteristics, facial recognition systems are categorized as biometrics. Although the accuracy of facial recognition systems as a biometric technology is lower than iris recognition, fingerprint image acquisition, palm recognition or voice recognition, it is widely adopted due to its contactless process. Facial recognition systems have been deployed in advanced human–computer interaction, video surveillance, law enforcement, passenger screening, decisions on employment and housing, and automatic indexing of images.
Facial recognition systems are employed throughout the world today by governments and private companies. Their effectiveness varies, and some systems have previously been scrapped because of their ineffectiveness. The use of facial recognition systems has also raised controversy, with claims that the systems violate citizens' privacy, commonly make incorrect identifications, encourage gender norms and racial profiling, and do not protect important biometric data. The appearance of synthetic media such as deepfakes has also raised concerns about its security. These claims have led to the ban of facial recognition systems in several cities in the United States. Growing societal concerns led social networking company Meta Platforms to shut down its Facebook facial recognition system in 2021, deleting the face-scan data of more than one billion users. The change represented one of the largest shifts in facial recognition usage in the technology's history. IBM also stopped offering facial recognition technology due to similar concerns.
History of facial recognition technology
Automated facial recognition was pioneered in the 1960s by Woody Bledsoe, Helen Chan Wolf, and Charles Bisson, whose work focused on teaching computers to recognize human faces. Their early facial recognition project was dubbed "man-machine" because a human first needed to establish the coordinates of facial features in a photograph before they could be used by a computer for recognition. Using a graphics tablet, a human would pinpoint facial features coordinates, such as the pupil centers, the inside and outside corners of eyes, and the widows peak in the hairline. The coordinates were used to calculate 20 individual distances, including the width of the mouth and of the eyes. A human could process about 40 pictures an hour, building a database of these computed distances. A computer would then automatically compare the distances for each photograph, calculate the difference between the distances, and return the closed records as a possible match.In 1970, Takeo Kanade publicly demonstrated a face-matching system that located anatomical features such as the chin and calculated the distance ratio between facial features without human intervention. Later tests revealed that the system could not always reliably identify facial features. Nonetheless, interest in the subject grew and in 1977 Kanade published the first detailed book on facial recognition technology.
In 1993, the Defense Advanced Research Project Agency and the Army Research Laboratory established the face recognition technology program FERET to develop "automatic face recognition capabilities" that could be employed in a productive real life environment "to assist security, intelligence, and law enforcement personnel in the performance of their duties." Face recognition systems that had been trialled in research labs were evaluated. The FERET tests found that while the performance of existing automated facial recognition systems varied, a handful of existing methods could viably be used to recognize faces in still images taken in a controlled environment. The FERET tests spawned three US companies that sold automated facial recognition systems. Vision Corporation and Miros Inc were founded in 1994, by researchers who used the results of the FERET tests as a selling point. Viisage Technology was established by an identification card defense contractor in 1996 to commercially exploit the rights to the facial recognition algorithm developed by Alex Pentland at MIT.
Following the 1993 FERET face-recognition vendor test, the Department of Motor Vehicles offices in West Virginia and New Mexico became the first DMV offices to use automated facial recognition systems to prevent people from obtaining multiple driving licenses using different names. Driver's licenses in the United States were at that point a commonly accepted form of photo identification. DMV offices across the United States were undergoing a technological upgrade and were in the process of establishing databases of digital ID photographs. This enabled DMV offices to deploy the facial recognition systems on the market to search photographs for new driving licenses against the existing DMV database. DMV offices became one of the first major markets for automated facial recognition technology and introduced US citizens to facial recognition as a standard method of identification. The increase of the US prison population in the 1990s prompted U.S. states to established connected and automated identification systems that incorporated digital biometric databases, in some instances this included facial recognition. In 1999, Minnesota incorporated the facial recognition system FaceIT by Visionics into a mug shot booking system that allowed police, judges and court officers to track criminals across the state.
Until the 1990s, facial recognition systems were developed primarily by using photographic portraits of human faces. Research on face recognition to reliably locate a face in an image that contains other objects gained traction in the early 1990s with the principal component analysis. The PCA method of face detection is also known as Eigenface and was developed by Matthew Turk and Alex Pentland. Turk and Pentland combined the conceptual approach of the Karhunen–Loève theorem and factor analysis, to develop a linear model. Eigenfaces are determined based on global and orthogonal features in human faces. A human face is calculated as a weighted combination of a number of Eigenfaces. Because few Eigenfaces were used to encode human faces of a given population, Turk and Pentland's PCA face detection method greatly reduced the amount of data that had to be processed to detect a face. Pentland in 1994 defined Eigenface features, including eigen eyes, eigen mouths and eigen noses, to advance the use of PCA in facial recognition. In 1997, the PCA Eigenface method of face recognition was improved upon using linear discriminant analysis to produce Fisherfaces. LDA Fisherfaces became dominantly used in PCA feature based face recognition. While Eigenfaces were also used for face reconstruction. In these approaches no global structure of the face is calculated which links the facial features or parts.
Purely feature based approaches to facial recognition were overtaken in the late 1990s by the Bochum system, which used Gabor filter to record the face features and computed a grid of the face structure to link the features. Christoph von der Malsburg and his research team at the University of Bochum developed Elastic Bunch Graph Matching in the mid-1990s to extract a face out of an image using skin segmentation. By 1997, the face detection method developed by Malsburg outperformed most other facial detection systems on the market. The so-called "Bochum system" of face detection was sold commercially on the market as ZN-Face to operators of airports and other busy locations. The software was "robust enough to make identifications from less-than-perfect face views. It can also often see through such impediments to identification as mustaches, beards, changed hairstyles and glasses—even sunglasses".
Real-time face detection in video footage became possible in 2001 with the Viola–Jones object detection framework for faces. Paul Viola and Michael Jones combined their face detection method with the Haar-like feature approach to object recognition in digital images to launch AdaBoost, the first real-time frontal-view face detector. By 2015, the Viola–Jones algorithm had been implemented using small low power detectors on handheld devices and embedded systems. Therefore, the Viola–Jones algorithm has not only broadened the practical application of face recognition systems but has also been used to support new features in user interfaces and teleconferencing.
Ukraine is using the US-based Clearview AI facial recognition software to identify dead Russian soldiers. Ukraine has conducted 8,600 searches and identified the families of 582 deceased Russian soldiers. The IT volunteer section of the Ukrainian army using the software is subsequently contacting the families of the deceased soldiers to raise awareness of Russian activities in Ukraine. The main goal is to destabilise the Russian government. It can be seen as a form of psychological warfare. About 340 Ukrainian government officials in five government ministries are using the technology. It is used to catch spies that might try to enter Ukraine.
Clearview AI's facial recognition database is only available to government agencies who may only use the technology to assist in the course of law enforcement investigations or in connection with national security.
The software was donated to Ukraine by Clearview AI. Russia is thought to be using it to find anti-war activists. Clearview AI was originally designed for US law enforcement. Using it in war raises new ethical concerns. One London based surveillance expert, Stephen Hare, is concerned it might make the Ukrainians appear inhuman: "Is it actually working? Or is it making say: 'Look at these lawless, cruel Ukrainians, doing this to our boys'?"