Boron group


The boron group are the chemical elements in group 13 of the periodic table, consisting of boron, aluminium, gallium, indium, thallium and nihonium. This group lies in the p-block of the periodic table. The elements in the boron group are characterized by having three valence electrons. These elements have also been referred to as the triels.
Several group 13 elements have biological roles in the ecosystem. Boron is a trace element in humans and is essential for some plants. Lack of boron can lead to stunted plant growth, while an excess can also cause harm by inhibiting growth. Aluminium has neither a biological role nor significant toxicity and is considered safe. Indium and gallium can stimulate metabolism; gallium is credited with the ability to bind itself to iron proteins. Thallium is highly toxic, interfering with the function of numerous vital enzymes, and has seen use as a pesticide.

Characteristics

Like other groups, the members of this family show patterns in electron configuration, especially in the outermost shells, resulting in trends in chemical behavior:
ZElementElectrons per shell
5boron2, 3
13aluminium2, 8, 3
31gallium2, 8, 18, 3
49indium2, 8, 18, 18, 3
81thallium2, 8, 18, 32, 18, 3
113nihonium2, 8, 18, 32, 32, 18, 3

The boron group is notable for trends in the electron configuration, as shown above, and in some of its elements' characteristics. An example of a trend in reactivity is boron's tendency to form reactive compounds with hydrogen. However, boron differs from the other group members. It has the second highest hardness of all the elements, only exceeded by diamond. Boron is considered a semi-metal while the others in the group are metals. Boron's melting point at 2076 °C is much higher than the second highest in the group, aluminium, at 660 °C.

Chemical reactivity

Hydrides

Most of the elements in the boron group show increasing reactivity as the elements get heavier in atomic mass and higher in atomic number. Boron, the first element in the group, is generally unreactive with many elements except at high temperatures, although it is capable of forming many compounds with hydrogen, sometimes called boranes. The simplest borane is diborane, or B2H6. Another example is B10H14.
The next group-13 elements, aluminium and gallium, form fewer stable hydrides, although both AlH3 and GaH3 exist. Indium, the next element in the group, is not known to form many hydrides, except in complex compounds such as the phosphine complex . No stable compound of thallium and hydrogen has been synthesized in any laboratory.

Oxides

All of the boron-group elements are known to form a trivalent oxide, with two atoms of the element bonded covalently with three atoms of oxygen. These elements show a trend of increasing pH. Boron oxide is slightly acidic, aluminium and gallium oxide are amphoteric, indium oxide is nearly amphoteric, and thallium oxide is a Lewis base because it dissolves in acids to form salts. Each of these compounds are stable, but thallium oxide decomposes at temperatures higher than 875 °C.
Image:B2O3powder.JPG|thumb|right|A powdered sample of boron trioxide, one of the oxides of boron

Halides

The elements in group 13 are also capable of forming stable compounds with the halogens, usually with the formula MX3 Fluorine, the first halogen, is able to form stable compounds with every element that has been tested, and the boron group is no exception. It is even hypothesized that nihonium could form a compound with fluorine, NhF3, before spontaneously decaying due to nihonium's radioactivity. Chlorine also forms stable compounds with all of the elements in the boron group, including thallium, and is hypothesized to react with nihonium. All of the elements will react with bromine under the right conditions, as with the other halogens but less vigorously than either chlorine or fluorine. Iodine will react with all natural elements in the periodic table except for the noble gases, and is notable for its explosive reaction with aluminium to form AlI3. Astatine, the fifth halogen, has only formed a few compounds, due to its radioactivity and short half-life, and no reports of a compound with an At–Al, –Ga, –In, –Tl, or –Nh bond have been seen, although scientists think that it should form salts with metals. Tennessine, the sixth and final member of group 17, may also form compounds with the elements in the boron group; however, because Tennessine is purely synthetic and thus must be created artificially, its chemistry has not been investigated, and any compounds would likely decay nearly instantly after formation due to its extreme radioactivity.

Physical properties

It has been noticed that the elements in the boron group have similar physical properties, although most of boron's are exceptional. For example, all of the elements in the boron group, except for boron itself, are soft. Moreover, all of the other elements in group 13 are relatively reactive at moderate temperatures, while boron's reactivity only becomes comparable at very high temperatures. One characteristic that all do have in common is having three electrons in their valence shells. Boron, being a metalloid, is a thermal and electrical insulator at room temperature, but a good conductor of heat and electricity at high temperatures. Unlike boron, the metals in the group are good conductors under normal conditions. This is in accordance with the long-standing generalization that all metals conduct heat and electricity better than most non-metals.

Oxidation states

The inert s-pair effect is significant in the group-13 elements, especially the heavier ones like thallium. This results in a variety of oxidation states. In the lighter elements, the +3 state is the most stable, but the +1 state becomes more prevalent with increasing atomic number, and is the most stable for thallium. Boron is capable of forming compounds with lower oxidization states, of +1 or +2, and aluminium can do the same. Gallium can form compounds with the oxidation states +1, +2 and +3. Indium is like gallium, but its +1 compounds are more stable than those of the lighter elements. The strength of the inert-pair effect is maximal in thallium, which is generally only stable in the oxidation state of +1, although the +3 state is seen in some compounds. Stable and monomeric gallium, indium and thallium radicals with a formal oxidation state of +2 have since been reported. Nihonium may have +5 oxidation state.

Periodic trends

There are several trends that can be observed in the properties of the boron group members. The boiling points of these elements drop from period to period, while densities tend to rise.
ElementBoiling pointDensity
Boron4,000 °C2.46
Aluminium2,519 °C2.7
Gallium2,204 °C5.904
Indium2,072 °C7.31
Thallium1,473 °C11.85

Nuclear

With the exception of the synthetic nihonium, all of the elements of the boron group have stable isotopes. Because all their atomic numbers are odd, boron, gallium and thallium have only two stable isotopes, while aluminium and indium are monoisotopic, having only one, although most indium found in nature is the weakly radioactive 115In. 10B and 11B are both stable, as are 27Al, 69Ga and 71Ga, 113In, and 203Tl and 205Tl. All of these isotopes are readily found in macroscopic quantities in nature. In theory, though, all isotopes with an atomic number greater than 66 are supposed to be unstable to alpha decay. Conversely, all elements with atomic numbers are less than or equal to 66 have at least one isotope that is theoretically energetically stable to all forms of decay.
Like all other elements, the elements of the boron group have radioactive isotopes, either found in trace quantities in nature or produced synthetically. The longest-lived of these unstable isotopes is the indium isotope 115In, with its extremely long half-life of. This isotope makes up the vast majority of all naturally occurring indium despite its slight radioactivity. The shortest-lived is 7B, with a half-life of a mere, being the boron isotope with the fewest neutrons and a enough to measure. Some radioisotopes have important roles in scientific research; a few are used in the production of goods for commercial use or, more rarely, as a component of finished products.

History

The boron group has had many names over the years. According to former conventions it was Group IIIB in the European naming system and Group IIIA in the American. The group has also gained two collective names, "earth metals" and "triels". The latter name is derived from the Latin prefix tri- and refers to the three valence electrons that all of these elements, without exception, have in their valence shells. The name "triels" was first suggested by International Union of Pure and Applied Chemistry in 1970.
Boron was known to the ancient Egyptians, but only in the mineral borax. The metalloid element was not known in its pure form until 1808, when Humphry Davy was able to extract it by the method of electrolysis. Davy devised an experiment in which he dissolved a boron-containing compound in water and sent an electric current through it, causing the elements of the compound to separate into their pure states. To produce larger quantities he shifted from electrolysis to reduction with sodium. Davy named the element boracium. At the same time two French chemists, Joseph Louis Gay-Lussac and Louis Jacques Thénard, used iron to reduce boric acid. The boron they produced was oxidized to boron oxide.
Aluminium, like boron, was first known in minerals before it was finally extracted from alum, a common mineral in some areas of the world. Antoine Lavoisier and Humphry Davy had each separately tried to extract it. Although neither succeeded, Davy had given the metal its current name. It was only in 1825 that the Danish scientist Hans Christian Ørsted successfully prepared a rather impure form of the element. Many improvements followed, a significant advance being made just two years later by Friedrich Wöhler, whose slightly modified procedure still yielded an impure product. The first pure sample of aluminium is credited to Henri Etienne Sainte-Claire Deville, who substituted sodium for potassium in the procedure. At that time aluminium was considered precious, and it was displayed next to such metals as gold and silver. The method used today, electrolysis of aluminium oxide dissolved in cryolite, was developed by Charles Martin Hall and Paul Héroult in the late 1880s.
Image:Sphalerite2USGOV.jpg|thumb|The mineral zinc blende, more commonly known as sphalerite, in which indium can occur.
Thallium, the heaviest stable element in the boron group, was discovered by William Crookes and Claude-Auguste Lamy in 1861. Unlike gallium and indium, thallium had not been predicted by Dmitri Mendeleev, having been discovered before Mendeleev invented the periodic table. As a result, no one was really looking for it until the 1850s when Crookes and Lamy were examining residues from sulfuric acid production. In the spectra they saw a completely new line, a streak of deep green, which Crookes named after the Greek word θαλλός, referring to a green shoot or twig. Lamy was able to produce larger amounts of the new metal and determined most of its chemical and physical properties.
Indium is the fourth element of the boron group but was discovered before the third, gallium, and after the fifth, thallium. In 1863 Ferdinand Reich and his assistant, Hieronymous Theodor Richter, were looking in a sample of the mineral zinc blende, also known as sphalerite, for the spectroscopic lines of the newly discovered element thallium. Reich heated the ore in a coil of platinum metal and observed the lines that appeared in a spectroscope. Instead of the green thallium lines that he expected, he saw a new line of deep indigo-blue. Concluding that it must come from a new element, they named it after the characteristic indigo color it had produced.
Gallium minerals were not known before August 1875, when the element itself was discovered. It was one of the elements that the inventor of the periodic table, Dmitri Mendeleev, had predicted to exist six years earlier. While examining the spectroscopic lines in zinc blende the French chemist Paul Emile Lecoq de Boisbaudran found indications of a new element in the ore. In just three months he was able to produce a sample, which he purified by dissolving it in a potassium hydroxide solution and sending an electric current through it. The next month he presented his findings to the French Academy of Sciences, naming the new element after the Greek name for Gaul, modern France.
The last confirmed element in the boron group, nihonium, was not discovered but rather created or synthesized. The element's synthesis was first reported by the Dubna Joint Institute for Nuclear Research team in Russia and the Lawrence Livermore National Laboratory in the United States, though it was the Dubna team who successfully conducted the experiment in August 2003. Nihonium was discovered in the decay chain of moscovium, which produced a few precious atoms of nihonium. The results were published in January of the following year. Since then around 13 atoms have been synthesized and various isotopes characterized. However, their results did not meet the stringent criteria for being counted as a discovery, and it was the later RIKEN experiments of 2004 aimed at directly synthesizing nihonium that were acknowledged by IUPAC as the discovery.