Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.
Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ad hoc solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics is graph theory, which by itself has numerous natural connections to other areas. Combinatorics is used frequently in computer science to obtain formulas and estimates in the analysis of algorithms.
Definition
The full scope of combinatorics is not universally agreed upon. According to H. J. Ryser, a definition of the subject is difficult because it crosses so many mathematical subdivisions. Insofar as an area can be described by the types of problems it addresses, combinatorics is involved with:- the enumeration of specified structures, sometimes referred to as arrangements or configurations in a very general sense, associated with finite systems,
- the existence of such structures that satisfy certain given criteria,
- the construction of these structures, perhaps in many ways, and
- optimization: finding the "best" structure or solution among several possibilities, be it the "largest", "smallest" or satisfying some other optimality criterion.
History
Basic combinatorial concepts and enumerative results appeared throughout the ancient world. The earliest recorded use of combinatorial techniques comes from problem 79 of the Rhind papyrus, which dates to the 16th century BC. The problem concerns a certain geometric series, and has similarities to Fibonacci's problem of counting the number of compositions of 1s and 2s that sum to a given total. Indian physician Sushruta asserts in Sushruta Samhita that 63 combinations can be made out of 6 different tastes, taken one at a time, two at a time, etc., thus computing all 26 − 1 possibilities. Greek historian Plutarch discusses an argument between Chrysippus and Hipparchus of a rather delicate enumerative problem, which was later shown to be related to Schröder–Hipparchus numbers. Earlier, in the Ostomachion, Archimedes may have considered the number of configurations of a tiling puzzle, while combinatorial interests possibly were present in lost works by Apollonius.In the Middle Ages, combinatorics continued to be studied, largely outside of the European civilization. The Indian mathematician Mahāvīra provided formulae for the number of permutations and combinations, and these formulas may have been familiar to Indian mathematicians as early as the 6th century CE. The philosopher and astronomer Rabbi Abraham ibn Ezra established the symmetry of binomial coefficients, while a closed formula was obtained later by the talmudist and mathematician Levi ben Gerson, in 1321.
The arithmetical triangle—a graphical diagram showing relationships among the binomial coefficients—was presented by mathematicians in treatises dating as far back as the 10th century, and would eventually become known as Pascal's triangle. Later, in Medieval England, campanology provided examples of what is now known as Hamiltonian cycles in certain Cayley graphs on permutations.
During the Renaissance, together with the rest of mathematics and the sciences, combinatorics enjoyed a rebirth. Works of Pascal, Newton, Jacob Bernoulli and Euler became foundational in the emerging field. In modern times, the works of J.J. Sylvester and Percy MacMahon helped lay the foundation for enumerative and algebraic combinatorics. Graph theory also enjoyed an increase of interest at the same time, especially in connection with the four color problem.
In the second half of the 20th century, combinatorics enjoyed a rapid growth, which led to establishment of dozens of new journals and conferences in the subject. In part, the growth was spurred by new connections and applications to other fields, ranging from algebra to probability, from functional analysis to number theory, etc. These connections shed the boundaries between combinatorics and parts of mathematics and theoretical computer science, but at the same time led to a partial fragmentation of the field.
Approaches and subfields of combinatorics
Enumerative combinatorics
Enumerative combinatorics is the most classical area of combinatorics and concentrates on counting the number of certain combinatorial objects. Although counting the number of elements in a set is a rather broad mathematical problem, many of the problems that arise in applications have a relatively simple combinatorial description. Fibonacci numbers is the basic example of a problem in enumerative combinatorics. The twelvefold way provides a unified framework for counting permutations, combinations and partitions.Analytic combinatorics
concerns the enumeration of combinatorial structures using tools from complex analysis and probability theory. In contrast with enumerative combinatorics, which uses explicit combinatorial formulae and generating functions to describe the results, analytic combinatorics aims at obtaining asymptotic formulae.Partition theory
Partition theory studies various enumeration and asymptotic problems related to integer partitions, and is closely related to q-series, special functions and orthogonal polynomials. Originally a part of number theory and analysis, it is now considered a part of combinatorics or an independent field. It incorporates the bijective approach and various tools in analysis and analytic number theory and has connections with statistical mechanics. Partitions can be graphically visualized with Young diagrams or Ferrers diagrams. They occur in a number of branches of mathematics and physics, including the study of symmetric polynomials and of the symmetric group and in group representation theory in general.Graph theory
Graphs are fundamental objects in combinatorics. Considerations of graph theory range from enumeration to existing structures to algebraic representations. Although there are very strong connections between graph theory and combinatorics, they are sometimes thought of as separate subjects. While combinatorial methods apply to many graph theory problems, the two disciplines are generally used to seek solutions to different types of problems.Design theory
Design theory is a study of combinatorial designs, which are collections of subsets with certain intersection properties. Block designs are combinatorial designs of a special type. This area is one of the oldest parts of combinatorics, such as in Kirkman's schoolgirl problem proposed in 1850. The solution of the problem is a special case of a Steiner system, which play an important role in the classification of finite simple groups. The area has further connections to coding theory and geometric combinatorics.Combinatorial design theory can be applied to the area of design of experiments. Some of the basic theory of combinatorial designs originated in the statistician Ronald Fisher's work on the design of biological experiments. Modern applications are also found in a wide gamut of areas including finite geometry, tournament scheduling, lotteries, mathematical chemistry, mathematical biology, algorithm design and analysis, networking, group testing and cryptography.
Finite geometry
Finite geometry is the study of geometric systems having only a finite number of points. Structures analogous to those found in continuous geometries but defined combinatorially are the main items studied. This area provides a rich source of examples for design theory. It should not be confused with discrete geometry.Order theory
Order theory is the study of partially ordered sets, both finite and infinite. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". Various examples of partial orders appear in algebra, geometry, number theory and throughout combinatorics and graph theory. Notable classes and examples of partial orders include lattices and Boolean algebras.Matroid theory
Matroid theory abstracts part of geometry. It studies the properties of sets of vectors in a vector space that do not depend on the particular coefficients in a linear dependence relation. Not only the structure but also enumerative properties belong to matroid theory. Matroid theory was introduced by Hassler Whitney and studied as a part of order theory. It is now an independent field of study with a number of connections with other parts of combinatorics.Extremal combinatorics
Extremal combinatorics studies how large or how small a collection of finite objects can be, if it has to satisfy certain restrictions. Much of extremal combinatorics concerns classes of set systems; this is called extremal set theory. For instance, in an n-element set, what is the largest number of k-element subsets that can pairwise intersect one another? What is the largest number of subsets of which none contains any other? The latter question is answered by Sperner's theorem, which gave rise to much of extremal set theory.The types of questions addressed in this case are about the largest possible graph which satisfies certain properties. For example, the largest triangle-free graph on 2n vertices is a complete bipartite graph Kn,n. Often it is too hard even to find the extremal answer f exactly and one can only give an asymptotic estimate.
Ramsey theory is another part of extremal combinatorics. It states that any sufficiently large configuration will contain some sort of order. It is an advanced generalization of the pigeonhole principle.