Circulatory system
In vertebrates, the circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the body. It includes the cardiovascular system, or vascular system, that consists of the heart and blood vessels. The circulatory system has two divisions, a systemic circulation or circuit, and a pulmonary circulation or circuit. Some sources use the terms cardiovascular system and vascular system interchangeably with circulatory system.
The network of blood vessels are the great vessels of the heart including large elastic arteries, and large veins; other arteries, smaller arterioles, capillaries that join with venules, and other veins. The circulatory system is closed in vertebrates, which means that the blood never leaves the network of blood vessels. Many invertebrates such as arthropods have an open circulatory system with a heart that pumps a hemolymph which returns via the body cavity rather than via blood vessels. Diploblasts such as sponges and comb jellies lack a circulatory system.
Blood is a fluid consisting of plasma, red blood cells, white blood cells, and platelets; it is circulated around the body carrying oxygen and nutrients to the tissues and collecting and disposing of waste materials. Circulated nutrients include proteins and minerals and other components include hemoglobin, hormones, and gases such as oxygen and carbon dioxide. These substances provide nourishment, help the immune system to fight diseases, and help maintain homeostasis by stabilizing temperature and natural pH.
In vertebrates, the lymphatic system is complementary to the circulatory system. The lymphatic system carries excess plasma away from the body tissues via accessory routes that return excess fluid back to blood circulation as lymph. The lymphatic system is a subsystem that is essential for the functioning of the blood circulatory system; without it the blood would become depleted of fluid.
The lymphatic system also works with the immune system. The circulation of lymph takes much longer than that of blood and, unlike the closed circulatory system, the lymphatic system is an open system. Some sources describe it as a secondary circulatory system.
The circulatory system can be affected by many cardiovascular diseases. Cardiologists are medical professionals which specialise in the heart, and cardiothoracic surgeons specialise in operating on the heart and its surrounding areas. Vascular surgeons focus on disorders of the blood vessels, and lymphatic vessels.
Structure
The circulatory system includes the heart, blood vessels, and blood. The cardiovascular system in all vertebrates, consists of the heart and blood vessels. Some sources use the terms cardiovascular system and vascular system interchangeably with circulatory system.The circulatory system is further divided into two major circuits – a pulmonary circulation, and a systemic circulation. The pulmonary circulation is a circuit loop from the right heart taking deoxygenated blood to the lungs where it is oxygenated and returned to the left heart. The systemic circulation is a circuit loop that delivers oxygenated blood from the left heart to the rest of the body, and returns deoxygenated blood back to the right heart via large veins known as the venae cavae. The systemic circulation can also be defined as two parts – a macrocirculation and a microcirculation. An average adult contains five to six quarts of blood, accounting for approximately 7% of their total body weight. Blood consists of plasma, red blood cells, white blood cells, and platelets. The digestive system also works with the circulatory system to provide the nutrients the system needs to keep the heart pumping.
Further circulatory routes are associated, such as the coronary circulation to the heart itself, the cerebral circulation to the brain, renal circulation to the kidneys, and bronchial circulation to the bronchi in the lungs. The human circulatory system is closed, meaning that the blood is contained within the vascular network. Nutrients travel through tiny blood vessels of the microcirculation to reach organs. The lymphatic system is an essential subsystem of the circulatory system consisting of a network of lymphatic vessels, lymph nodes, organs, tissues and circulating lymph. This subsystem is an open system. A major function is to carry the lymph, draining and returning interstitial fluid into the lymphatic ducts back to the heart for return to the circulatory system. Another major function is working together with the immune system to provide defense against pathogens.
Heart
The heart pumps blood to all parts of the body. In the human heart there is one atrium and one ventricle for each circulation, and with both a systemic and a pulmonary circulation there are four chambers in total: left atrium, left ventricle, right atrium and right ventricle.Pulmonary circulation
Oxygen-deprived blood from the superior and inferior vena cava enters the right atrium of the heart and flows through the tricuspid valve into the right ventricle, from which it is then pumped through the pulmonary semilunar valve into the pulmonary artery to the lungs. Gas exchange occurs in the lungs, whereby is released from the blood, and oxygen is absorbed. The pulmonary vein returns the now oxygen-rich blood to the left atrium.A separate circuit from the systemic circulation, the bronchial circulation supplies blood to the tissue of the larger airways of the lung.
Systemic circulation
The systemic circulation is a circuit loop that delivers oxygenated blood from the left heart to the rest of the body through the aorta. Deoxygenated blood is returned in the systemic circulation to the right heart via two large veins, the inferior vena cava and superior vena cava, where it is pumped from the right atrium into the pulmonary circulation for oxygenation. The systemic circulation can also be defined as having two parts – a macrocirculation and a microcirculation.Blood vessels
The blood vessels of the circulatory system are the arteries, veins, and capillaries. The large arteries and veins that take blood to, and away from the heart are known as the great vessels.Arteries
Oxygenated blood enters the systemic circulation when leaving the left ventricle, via the aortic semilunar valve. The first part of the systemic circulation is the aorta, a massive and thick-walled artery. The aorta arches and gives branches supplying the upper part of the body after passing through the aortic opening of the diaphragm at the level of thoracic ten vertebra, it enters the abdomen. Later, it descends down and supplies branches to abdomen, pelvis, perineum and the lower limbs.The walls of the aorta are elastic. This elasticity helps to maintain the blood pressure throughout the body. When the aorta receives almost five litres of blood from the heart, it recoils and is responsible for pulsating blood pressure. As the aorta branches into smaller arteries, their elasticity goes on decreasing and their compliance goes on increasing.
Capillaries
Arteries branch into small passages called arterioles and then into the capillaries. The capillaries merge to bring blood into the venous system. The total length of muscle capillaries in a 70 kg human is estimated to be between 9,000 and 19,000 km.Veins
Capillaries merge into venules, which merge into veins. The venous system feeds into the two major veins: the superior vena cava – which mainly drains tissues above the heart – and the inferior vena cava – which mainly drains tissues below the heart. These two large veins empty into the right atrium of the heart.Portal veins
The general rule is that arteries from the heart branch out into capillaries, which collect into veins leading back to the heart. Portal veins are a slight exception to this. In humans, the only significant example is the hepatic portal vein which combines from capillaries around the gastrointestinal tract where the blood absorbs the various products of digestion; rather than leading directly back to the heart, the hepatic portal vein branches into a second capillary system in the liver.Coronary circulation
The heart itself is supplied with oxygen and nutrients through a small "loop" of the systemic circulation and derives very little from the blood contained within the four chambers.The coronary circulation system provides a blood supply to the heart muscle itself. The coronary circulation begins near the origin of the aorta by two coronary arteries: the right coronary artery and the left coronary artery. After nourishing the heart muscle, blood returns through the coronary veins into the coronary sinus and from this one into the right atrium. Backflow of blood through its opening during atrial systole is prevented by the Thebesian valve. The smallest cardiac veins drain directly into the heart chambers.