Annelid


The annelids, also known as the segmented worms, are animals that comprise the phylum Annelida. The phylum contains over 22,000 extant species, including ragworms, earthworms, and leeches. The species exist in and have adapted to various ecologies – some in marine environments as distinct as tidal zones and hydrothermal vents, others in fresh water, and yet others in moist terrestrial environments.
The annelids are bilaterally symmetrical, triploblastic, coelomate, invertebrate organisms. They also have parapodia for locomotion. Most textbooks still use the traditional division into Polychaetes, Oligochaetes and Hirudinea. Cladistic research since 1997 has radically changed this scheme, viewing leeches as a sub-group of oligochaetes and oligochaetes as a sub-group of polychaetes. In addition, the Pogonophora, Echiura and Sipuncula, previously regarded as separate phyla, are now regarded as sub-groups of polychaetes. Annelids are considered members of the Lophotrochozoa, a "super-phylum" of protostomes that also includes molluscs, brachiopods, and nemerteans.
The basic annelid form consists of multiple segments called metameres. Each segment has the same sets of organs and, in most polychaetes, has a pair of parapodia that many species use for locomotion. Septa separate the segments of many species, but are poorly defined or absent in others, and Echiura and Sipuncula show no obvious signs of segmentation. In species with well-developed septa, the blood circulates entirely within blood vessels, and the vessels in segments near the front ends of these species are often built up with muscles that act as hearts. The septa of such species also enable them to change the shapes of individual segments, which facilitates movement by peristalsis or by undulations that improve the effectiveness of the parapodia. In species with incomplete septa or none, the blood circulates through the main body cavity without any kind of pump, and there is a wide range of locomotory techniques – some burrowing species turn their pharynges inside out to drag themselves through the sediment.
Earthworms are oligochaetes that support terrestrial food chains both as prey and predators, and in some regions are important in aeration and enriching of soil. The burrowing of marine polychaetes, which may constitute up to a third of all species in near-shore environments, encourages the development of ecosystems by enabling water and oxygen to penetrate the sea floor. In addition to improving soil fertility, annelids serve humans as food and as bait. Scientists observe annelids to monitor the quality of marine and fresh water. Although blood-letting is used less frequently by doctors than it once was, some leech species are regarded as endangered because they have been over-harvested for this purpose in the last few centuries. Ragworms' jaws are studied by engineers as they offer an exceptional combination of lightness and strength.
Since annelids are soft-bodied, their fossils are rare – mostly jaws and the mineralized tubes that some of the species secreted. Although some late Ediacaran fossils may represent annelids, the oldest known fossil that is identified with confidence comes from about in the early Cambrian period. Fossils of most modern mobile polychaete groups appeared by the end of the Carboniferous, about. Palaeontologists disagree about whether some body fossils from the mid Ordovician, about, are the remains of oligochaetes, and the earliest indisputable fossils of the group appear in the Paleogene period, which began 66 million years ago.

Classification and diversity

There are over 22,000 living annelid species, ranging in size from microscopic to the Australian giant Gippsland earthworm and Amynthas mekongianus, which can both grow up to long to the largest annelid, Microchaetus rappi which can grow up to 6.7 m. Although research since 1997 has radically changed scientists' views about the evolutionary family tree of the annelids, most textbooks use the traditional classification into the following sub-groups:
  • Polychaetes. As their name suggests, they have multiple chetae per segment. Polychaetes have parapodia that function as limbs, and nuchal organs that are thought to be chemosensors. Most are marine animals, although a few species live in fresh water and even fewer on land.
  • Clitellates. These have few or no chetae per segment, and no nuchal organs or parapodia. However, they have a unique reproductive organ, the ring-shaped clitellum around their bodies, which produces a cocoon that stores and nourishes fertilized eggs until they hatch or, in moniligastrids, yolky eggs that provide nutrition for the embryos. The clitellates are sub-divided into:
  • *Oligochaetes, which includes earthworms. Oligochaetes have a sticky pad in the roof of the mouth. Most are burrowers that feed on wholly or partly decomposed organic materials.
  • *Hirudinea, whose name means "leech-shaped" and whose best known members are leeches. Marine species are mostly blood-sucking parasites, mainly on fish, while most freshwater species are predators. They have suckers at both ends of their bodies, and use these to move rather like inchworms.
  • The Archiannelida, minute annelids that live in the spaces between grains of marine sediment, were treated as a separate class because of their simple body structure, but are now regarded as polychaetes.
Some other groups of animals have been classified in various ways, but are now widely regarded as annelids:
  • Pogonophora / Siboglinidae were first discovered in 1914, and their lack of a recognizable gut made it difficult to classify them. They have been classified as a separate phylum, Pogonophora, or as two phyla, Pogonophora and Vestimentifera. More recently they have been re-classified as a family, Siboglinidae, within the polychaetes.
  • The Echiura have a checkered taxonomic history: in the 19th century they were assigned to the phylum "Gephyrea", which is now empty as its members have been assigned to other phyla; the Echiura were next regarded as annelids until the 1940s, when they were classified as a phylum in their own right; but a molecular phylogenetics analysis in 1997 concluded that echiurans are annelids.
  • Myzostomida live on crinoids and other echinoderms, mainly as parasites. In the past they have been regarded as close relatives of the trematode flatworms or of the tardigrades, but in 1998 it was suggested that they are a sub-group of polychaetes. However, another analysis in 2002 suggested that myzostomids are more closely related to flatworms or to rotifers and acanthocephales.
  • Sipuncula was originally classified as annelids, despite the complete lack of segmentation, bristles and other annelid characters. The phylum Sipuncula was later allied with the Mollusca, mostly on the basis of developmental and larval characters. Phylogenetic analyses based on 79 ribosomal proteins indicated a position of Sipuncula within Annelida. Subsequent analysis of the mitochondrion's DNA has confirmed their close relationship to the Myzostomida and Annelida. It has also been shown that a rudimentary neural segmentation similar to that of annelids occurs in the early larval stage, even if these traits are absent in the adults.
Mitogenomic and phylogenomic analysis also implies that Orthonectida, a group of extremely simplified parasites traditionally placed in Mesozoa, are actually reduced annelids. Research suggest that also nemerteans are annelids, with Oweniidae and Magelonidae as their closest relatives.

Distinguishing features

No single feature distinguishes annelids from other invertebrate phyla, but they have a distinctive combination of features. Their bodies are long, with segments that are divided externally by shallow ring-like constrictions called annuli and internally by septa at the same points, although in some species the septa are incomplete and in a few cases missing. Most of the segments contain the same sets of organs, although sharing a common gut, circulatory system and nervous system makes them inter-dependent. Their bodies are covered by a cuticle that does not contain cells but is secreted by cells in the skin underneath, is made of tough but flexible collagen and does not molton the other hand arthropods' cuticles are made of the more rigid α-chitin, and molt until the arthropods reach their full size. Most annelids have closed circulatory systems, where the blood makes its entire circuit via blood vessels.

Description

Segmentation

In addition to Sipuncula and Echiura, also lineages like Lobatocerebrum, Diurodrilus and Polygordius have lost their segmentation, but these are the exceptions from the rule. Most of an annelid's body consists of segments that are practically identical, having the same sets of internal organs and external chaetae and, in some species, appendages. The frontmost and rearmost sections are not regarded as true segments as they do not contain the standard sets of organs and do not develop in the same way as the true segments. The frontmost section, called the prostomium contains the brain and sense organs, while the rearmost, called the pygidium or periproct contains the anus, generally on the underside. The first section behind the prostomium, called the peristomium, is regarded by some zoologists as not a true segment, but in some polychaetes the peristomium has chetae and appendages like those of other segments.
The segments develop one at a time from a growth zone just ahead of the pygidium, so that an annelid's youngest segment is just in front of the growth zone while the peristomium is the oldest. This pattern is called teloblastic growth. Some groups of annelids, including all leeches, have fixed maximum numbers of segments, while others add segments throughout their lives.
The phylum's name is derived from the Latin word annelus, meaning "little ring".