Blood transfusion
Blood transfusion is the process of transferring blood products into a person's circulation intravenously. Transfusions are used for various medical conditions to replace lost components of the blood. Early transfusions used whole blood, but modern medical practice commonly uses only components of the blood, such as red blood cells, plasma, platelets, and other clotting factors. White blood cells are transfused only in very rare circumstances, since granulocyte transfusion has limited applications. Whole blood has come back into use in the trauma setting.
Red blood cells contain hemoglobin and supply the cells of the body with oxygen. White blood cells are not commonly used during transfusions, but they are part of the immune system and also fight infections. Plasma is the "yellowish" liquid part of blood, which acts as a buffer and contains proteins and other important substances needed for the body's overall health. Platelets are involved in blood clotting, preventing the body from bleeding. Before these components were known, doctors believed that blood was homogeneous. Because of this scientific misunderstanding, many patients died because of incompatible blood transferred to them.
Medical uses
Red cell transfusion
Historically, red blood cell transfusion was considered when the hemoglobin level fell below 100g/L or hematocrit fell below 30%. Because each unit of blood given carries risks, a trigger level lower than that, at 70 to 80g/L, is now usually used, as it has been shown to have better patient outcomes. The administration of a single unit of blood is the standard for hospitalized people who are not bleeding, with this treatment followed with re-assessment and consideration of symptoms and hemoglobin concentration. Patients with poor oxygen saturation may need more blood. The advisory caution to use blood transfusion only with more severe anemia is in part due to evidence that outcomes are worsened if larger amounts are given. One may consider transfusion for people with symptoms of cardiovascular disease such as chest pain or shortness of breath. In cases where patients have low levels of hemoglobin due to iron deficiency, but are cardiovascularly stable, oral or parenteral iron is a preferred option based on both efficacy and safety. Other blood products are given where appropriate, e.g., fresh frozen plasma to treat clotting deficiencies and platelets to treat or prevent bleeding in thrombocytopenic patients.Procedure
Before a blood transfusion is given, there are many steps taken to ensure quality of the blood products, compatibility, and safety to the recipient. In 2012, a national blood policy was in place in 70% of countries and 69% of countries had specific legislation that covers the safety and quality of blood transfusion.Blood donation
The source of blood to be transfused can either be the potential recipient, or someone else. The latter is much more common than the former. Using another's blood must first start with donation of blood. Blood is most commonly donated as whole blood obtained intravenously and mixed with an anticoagulant. In first-world countries, donations are usually anonymous to the recipient, but products in a blood bank are always individually traceable through the whole cycle of donation, testing, separation into components, storage, and administration to the recipient. This enables management and investigation of any suspected transfusion related disease transmission or transfusion reaction. Developing countries rely heavily on replacement and remunerated donors rather than voluntary nonremunerated donors due to concerns regarding donation- and transfusion-transmitted infection as well as local and cultural beliefs.It is unclear whether applying alcohol swab alone or alcohol swab followed by antiseptic is able to reduce contamination of donor's blood.
Studies show that the main motivators to blood donation tend to be prosocial, while the main deterrents include fear, distrust, or perceived racial discrimination in historic contexts.
Processing and testing
Donated blood is usually subjected to processing after it is collected, to make it suitable for use in specific patient populations. Collected blood is then separated into blood components by centrifugation: red blood cells, plasma, and platelets. Plasma can be further processed to manufacture albumin protein, clotting factor concentrates, cryoprecipitate, fibrinogen concentrate, and immunoglobulins. Red cells, plasma and platelets can also be donated individually via a more complex process called apheresis.- The World Health Organization recommends that all donated blood be tested for transfusion-transmissible infections. These include HIV, hepatitis B, hepatitis C, Treponema pallidum and, where relevant, other infections that pose a risk to the safety of the blood supply, such as Trypanosoma cruzi and Plasmodium species. According to the WHO, 10 countries are not able to screen all donated blood for one or more of: HIV, hepatitis B, hepatitis C, or syphilis. One of the main reasons for this is because testing kits are not always available. However the prevalence of transfusion-transmitted infections is much higher in low income countries compared to middle and high income countries.
- All donated blood should also be tested for the ABO blood group system and Rh blood group system to ensure that the patient is receiving compatible blood.
- In addition, in some countries platelet products are also tested for bacterial infections due to its higher inclination for contamination due to storage at room temperature.
- Donors may be tested for cytomegalovirus because of the risk of transmission to certain immunocompromised recipients, such as those with stem cell transplant or T cell diseases. However, testing is not universally mandated, because leukoreduced blood is generally considered safe from CMV transmission; also, most donors are seropositive for CMV, and are not actively viremic. CMV seropositive donors are still eligible to donate.
- Leukocyte reduction is the removal of white blood cells by filtration. Leukoreduced blood products are less likely to cause HLA alloimmunization, febrile non-hemolytic transfusion reaction, cytomegalovirus infection, and platelet-transfusion refractoriness.
- Pathogen reduction treatment that involves, for example, the addition of riboflavin with subsequent exposure to UV light has been shown to be effective in inactivating pathogens in blood products. By inactivating white blood cells in donated blood products, riboflavin and UV light treatment can also replace gamma-irradiation as a method to prevent graft-versus-host disease.
Compatibility testing
A positive screen warrants an antibody panel/investigation to determine if it is clinically significant. An antibody panel consists of commercially prepared group O red cell suspensions from donors that have been phenotyped for antigens that correspond to commonly encountered and clinically significant alloantibodies. Donor cells may have homozygous, heterozygous expression or no expression of various antigens. The phenotypes of all the donor cells being tested are shown in a chart. The patient's serum is tested against the various donor cells using an indirect Coombs test. Based on the reactions of the patient's serum against the donor cells, a pattern will emerge to confirm the presence of one or more antibodies. Not all antibodies are clinically significant. Once the patient has developed a clinically significant antibody it is vital that the patient receive antigen-negative red blood cells to prevent future transfusion reactions.
If there is no antibody present, an immediate spin crossmatch may be performed where the recipient serum and donor rbc are incubated. In the immediate spin method, two drops of patient serum are tested against a drop of 3–5% suspension of donor cells in a test tube and spun in a serofuge. Agglutination or hemolysis in the test tube is a positive reaction. If the crossmatch is positive, then further investigation is needed. Patients with no history of red cell antibodies may qualify for computer-assisted crossmatch, which does not involve combining patient serum with donor cells.
If an antibody is suspected, potential donor units must first be screened for the corresponding antigen by phenotyping them. Antigen negative units are then tested against the patient plasma using an antiglobulin/indirect crossmatch technique at 37 degrees Celsius to enhance reactivity and make the test easier to read.
In urgent cases where crossmatching cannot be completed, and the risk of dropping hemoglobin outweighs the risk of transfusing uncrossmatched blood, O-negative blood is used, followed by crossmatch as soon as possible. O-negative is also used for children and women of childbearing age. It is preferable for the laboratory to obtain a pre-transfusion sample in these cases so a type and screen can be performed to determine the actual blood group of the patient and to check for alloantibodies.